zoukankan      html  css  js  c++  java
  • Coloring Edges CodeForces

    You are given a directed graph with nn vertices and mm directed edges without self-loops or multiple edges.

    Let's denote the kk-coloring of a digraph as following: you color each edge in one of kk colors. The kk-coloring is good if and only if there no cycle formed by edges of same color.

    Find a good kk-coloring of given digraph with minimum possible kk.

    Input

    The first line contains two integers nn and mm (2n50002≤n≤5000, 1m50001≤m≤5000) — the number of vertices and edges in the digraph, respectively.

    Next mm lines contain description of edges — one per line. Each edge is a pair of integers uu and vv (1u,vn1≤u,v≤n, uvu≠v) — there is directed edge from uu to vv in the graph.

    It is guaranteed that each ordered pair (u,v)(u,v) appears in the list of edges at most once.

    Output

    In the first line print single integer kk — the number of used colors in a good kk-coloring of given graph.

    In the second line print mm integers c1,c2,,cmc1,c2,…,cm (1cik1≤ci≤k), where cici is a color of the ii-th edge (in order as they are given in the input).

    If there are multiple answers print any of them (you still have to minimize kk).

    Examples

    Input
    4 5
    1 2
    1 3
    3 4
    2 4
    1 4
    
    Output
    1
    1 1 1 1 1 
    
    Input
    3 3
    1 2
    2 3
    3 1
    
    Output
    2
    1 1 2 
    #include<bits/stdc++.h>//网上大佬的代码 
    using namespace std;
    typedef long long ll;
    const int maxn = 5e3+5;
    const int inf = 0x3f3f3f3f;
    int n, m, d[maxn], res[maxn];
    
    vector<int> g[maxn];
    
    struct node {
        int u, v;
        node(int u = 0, int v = 0) : u(u), v(v) {}//初始化; 
    }edge[maxn];
    
    int topo()//拓扑排序 
    {
        int cnt = 0;
        
        queue<int> q;
        for (int i = 1; i <= n; i++)
            if (d[i] == 0) q.push(i); //将入度为零的点放入队列 
            
        while (!q.empty()) {
            int t = q.front(); q.pop();
            cnt++; //计算入度可以为零的点的数量 ,
            //如果有入度不能为零的点,表明有环; 
            for (int i = 0; i < g[t].size(); i++) {
                int v = g[t][i];
                d[v]--;
                if (d[v] == 0)
                    q.push(v);
            }
        }
        if (cnt == n)
            return 1;
        return 0;
    }
    
    int main()
    {
        cin >> n >> m;
        memset(d, 0, sizeof(d));
        
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            if (u > v)
                res[i] = 2;
            else
                res[i] = 1;
                //使环内的边为不同颜色; 
            g[u].push_back(v);//记录u指向v; 
            
            d[v]++;//入度的数量; 
        }
        
        if (topo()) 
        {
            cout << 1 << "
    ";
            for (int i = 0; i < m; i++)
                printf("1 ");
            cout << "
    ";
            
        } else {
            
            cout << 2 << "
    ";
            for (int i = 0; i < m; i++)
                printf("%d ", res[i]);
            cout << "
    ";
        }
        return 0;
    }
  • 相关阅读:
    Talend open studio数据导入、导出、同步Mysql、oracle、sqlserver简单案例
    Mysql彻底卸载
    .net图片快速去底(去除白色背景)
    .net图片自动裁剪白边函数案例
    .net图片裁剪抠图之性能优化
    .net图片压缩
    .net微软消息队列(msmq)简单案例
    SVM手撕公式
    算法效率分析
    模型稳定性
  • 原文地址:https://www.cnblogs.com/qqshiacm/p/11656827.html
Copyright © 2011-2022 走看看