zoukankan      html  css  js  c++  java
  • [Luogu3768]简单的数学题

    Portal

    [求 sum_{i = 1}^{n}sum_{j = 1}^{n}(i,j)ij ]


    好像直接利用(varphi)很好做诶:

    [sum_{i = 1}^{n}sum_{j = 1}^{n}(i,j)ij\ = sum_{i = 1}^{n} isum_{j = 1}^{n}j sum_{d | (i,j)} varphi(d)\ = sum_{i = 1}^{n} isum_{j = 1}^{n}j sum_{d | i,d | j} varphi(d)\ = sum_{d = 1}^{n} d ^ 2varphi(d) sum_{i = 1}^{lfloor frac{n}{d} floor}isum_{j = 1}^{lfloor frac{n}{d} floor}j\ ]

    令$Sum(n) = sum_{i = 1}^{n} i $

    那么有:

    [原式 = sum_{d = 1}^{n}d^2varphi(d) Sum^2(lfloorfrac{n}{d} floor) ]

    后面一部分可以整除分块。考虑前面一部分:

    构造:(g(n) = n ^ 2)

    [(f * g)(n) = sum_{d | n} d^2varphi(d) * frac{n ^ 2}{d ^ 2} \ = n ^ 2 sum_{d | n} varphi(d) = n ^ 3 ]

    有:(sum{n ^ 3} = (sum{n})^2)

    然后杜教筛筛出前面的和,然后整除分块即可。


    这里有莫比乌斯反演推式子的办法,可以参考一下

    #include <bits/stdc++.h>
    #include <bits/extc++.h>
    using namespace std;
    #define rep(i, a, b) for(LL i = (a), i##_end_ = (b); i <= i##_end_; ++i)
    #define drep(i, a, b) for(LL i = (a), i##_end_ = (b); i >= i##_end_; --i)
    #define clar(a, b) memset((a), (b), sizeof(a))
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    typedef long long LL;
    typedef long double LD;
    LL read() {
        char ch = getchar();
        LL x = 0, flag = 1;
        for (;!isdigit(ch); ch = getchar()) if (ch == '-') flag *= -1;
        for (;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
        return x * flag;
    }
    
    __gnu_pbds :: gp_hash_table <LL, LL> Sum;
    const int Maxn = 10000009;
    LL isnprime[Maxn], prime[Maxn], tot, phi[Maxn];
    LL prefix[Maxn], Mod, n;
    
    LL fpm(LL a, LL tims) {
    	LL r = 1;
    	for (; tims; tims >>= 1, a = a * a % Mod) 
    		if (tims & 1) r = r * a % Mod;
    	return r;
    }
    
    LL inv(LL a) { return fpm(a, Mod - 2); }
    
    void init() {
    	Mod = read();
    	phi[1] = 1;
    	rep (i, 2, Maxn - 1) {
    		if (!isnprime[i]) 
    			prime[++tot] = i, phi[i] = i - 1;
    
    		for (int j = 1, k; j <= tot && (k = i * prime[j]) < Maxn; ++j) {
    			isnprime[k] = 1;
    			if (i % prime[j] == 0) {
    				phi[k] = phi[i] * prime[j];
    				break;
    			} else phi[k] = phi[prime[j]] * phi[i];
    		}
    	}
    
    	rep (i, 1, Maxn - 1) prefix[i] = (prefix[i - 1] + (phi[i] * i % Mod * i % Mod)) % Mod;
    }
    
    int inv2, inv6;
    inline LL singleSum(LL val) { return val % Mod * (val % Mod + 1) % Mod * inv2 % Mod; }
    inline LL doubleSum(LL val) { return (val % Mod * (val % Mod + 1) % Mod * (val % Mod * 2 + 1) % Mod) * inv6 % Mod; }
    inline LL tripleSum(LL val) { return singleSum(val) * singleSum(val) % Mod; }
    
    LL calcSum(LL val) {
    	if (val < Maxn) return prefix[val];
    	if (Sum[val]) return Sum[val];
    
    	LL ans = tripleSum(val);
    	for (LL l = 2, r; l <= val; l = r + 1) {
    		r = val / (val / l);
    		LL res = ((doubleSum(r) - doubleSum(l - 1)) % Mod + Mod) % Mod;
    		(ans += (Mod - res * calcSum(val / l) % Mod) % Mod) %= Mod;
    	}
    
    	return Sum[val] = (ans + Mod) % Mod;
    }
    
    void solve() {
    	inv2 = inv(2), inv6 = inv(6);
    	n = read();
    
    	LL ans = 0; 
    	for (LL l = 1, r; l <= n; l = r + 1) {
    		r = n / (n / l);
    		(ans += tripleSum(n / l) * ((calcSum(r) - calcSum(l - 1) + Mod) % Mod) % Mod) %= Mod;
    	}
    
    	cout << ans << endl;
    }
    
    int main() {
    	freopen("LG3768.in", "r", stdin);
    	freopen("LG3768.out", "w", stdout);
    
    	init();
    	solve();
    
    #ifdef Qrsikno
        debug("
    Running time: %.3lf(s)
    ", clock() * 1.0 / CLOCKS_PER_SEC);
    #endif
        return 0;
    }
    
  • 相关阅读:
    Lucene.NET 开发实现
    WIN7安装配置 SharePoint2010 各种问题汇总
    Wince后台系统补丁更新实现
    Lucene.NET 若干知识点&&疑难杂症以及解决
    .NET设计模式系列文章 很有名的博客园TerryLee的系列文章,设计模式不可多得的好文
    客户端多线程应用的好工具:BackgroundWorker
    Swift、ObjectiveC 单例模式 (Singleton)
    字节对齐
    iOS中求出label中文字的行数和每一行的内容
    工作终于到的坑爹集锦,欢迎补充~
  • 原文地址:https://www.cnblogs.com/qrsikno/p/10111165.html
Copyright © 2011-2022 走看看