zoukankan      html  css  js  c++  java
  • [BZOJ2286] 消耗战

    Description

    给定你一棵n个点的树,q次询问,每次询问以切边的方式使给出的关键点与根节点不联通的最小代价。

    $ n leq 250000, sum k <= 500000 $

    Solution

    虚树的一道基本的应用题。 考虑一个暴力的DPDP[i] 表示切断其子树内的关键点的最小代价。那么显然有:(dp[u] = sum_{v | v~is~a~son ~of~ u} min(dp[v], UpsideMin[v])),其中upsideMin[u],表示u到根节点上的链上的最小的边权。

    显然这样做是对的。但时间复杂度过不去。考虑一个点,如果它不是关键点,也不是一部分关键点的LCA,以及根节点。那么我们在dp时其实可以忽略它(因为更新u时只与v有关),那么我们只要把一部分树中的点抽离出来dp

    但这样每次都要建立一次树,考虑把他们(KeyVertex)按照Euler序排序, 因为Euler序是真实的出入栈的记录。又DFS的本质是出入栈以及对栈顶元素进行操作。所以直接用栈进行模拟即可。

    注意, 我们求LCA时不需要全部都求,只要把关键点按照DFS序排序后相邻之间求LCA,因为要去掉无关的点,而不选择LCA又会算重,所以只需要按照dfs序排序后相邻点求lca,这样也只有m-1个lca

    Code

    #include<bits/stdc++.h>
    using namespace std;
    #define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
    #define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
    #define clar(a, b) memset((a), (b), sizeof(a))
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define Debug(s) debug("The massage in line %d, Function %s: %s
    ", __LINE__, __FUNCTION__, s)
    typedef long long LL;
    typedef long double LD;
    const int BUF_SIZE = (int)1e6 + 10;
    struct fastIO {
        char buf[BUF_SIZE], buf1[BUF_SIZE];
        int cur, cur1;
        FILE *in, *out;
        fastIO() {
            cur = BUF_SIZE, in = stdin, out = stdout;
    		cur1 = 0;
        }
        inline char getchar() {
            if(cur == BUF_SIZE) fread(buf, BUF_SIZE, 1, in), cur = 0;
            return *(buf + (cur++));
        }
        inline void putchar(char ch) {
            *(buf1 + (cur1++)) = ch;
            if (cur1 == BUF_SIZE) fwrite(buf1, BUF_SIZE, 1, out), cur1 = 0;
        }
        inline int flush() {
            if (cur1 > 0) fwrite(buf1, cur1, 1, out);
            return cur1 = 0;
        }
    }IO;
    #define getchar IO.getchar
    #define putchar IO.putchar
    int read() {
    	char ch = getchar();
    	int x = 0, flag = 1;
    	for(;!isdigit(ch); ch = getchar()) if(ch == '-') flag *= -1;
    	for(;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
    	return x * flag;
    }
    void write(LL x) {
    	if(x < 0) putchar('-'), x = -x;
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + 48);
    }
    void putString(char s[], char EndChar = '
    ') {
    	rep(i, 0, strlen(s) - 1) putchar(*(s + i));
    	if(~EndChar) putchar(EndChar);
    }
    
    #define Maxn 250009
    struct edge {
    	int to, nxt, w;
    }g[Maxn << 1];
    int n, head[Maxn], e;
    
    int size[Maxn], fa[Maxn], top[Maxn], dfn[Maxn], efn[Maxn], clk, son[Maxn], dep[Maxn];
    int beg[Maxn], lst[Maxn], Euler_clk;
    int UpMin[Maxn];
    
    namespace INIT{
    
    	void dfs_init(int u, int pre) {
    		dep[u] = dep[pre] + 1; fa[u] = pre;
    		size[u] = 1;
    		beg[u] = ++Euler_clk;
    		for(int i = head[u]; ~i; i = g[i].nxt) {
    			int v = g[i].to;
    			if(v != pre) {
    				UpMin[v] = min(UpMin[u], g[i].w);
    				dfs_init(v, u);
    				size[u] += size[v];
    				son[u] = (son[u] == -1 || size[son[u]] < size[v]) ? v : son[u];
    			}
    		}
    		lst[u] = ++Euler_clk;
    	}
    	void dfs_link(int u, int _top) {
    		top[u] = _top;
    		dfn[u] = ++clk; efn[clk] = u;
    		if(~son[u]) dfs_link(son[u], _top); else return ;
    		for(int i = head[u]; ~i; i = g[i].nxt) {
    			int v = g[i].to;
    			if(v != fa[u] && v != son[u]) dfs_link(v, v);
    		}
    	}
    
    	void add(int u, int v, int w) {
    		g[++e] = (edge){v, head[u], w}, head[u] = e;
    	}
    
    	void Main() {
    		clar(UpMin, 0x3f);
    		clar(head, -1), clar(son, -1);
    		n = read();
    		rep(i, 1, n - 1) {
    			int u = read(), v = read(), w = read();	
    			add(u, v, w), add(v, u, w);
    		}
    
    		dfs_init(1, 0);
    		dfs_link(1, 1);
    	}
    }
    
    namespace SOLVE{
    	vector <int> keyVertex, Tmp;
    	stack <int> s_stack;
    	LL dp[Maxn], instack[Maxn];
    
    	int LCA(int u, int v) {
    		while(top[u] != top[v]) {
    			if(dep[top[u]] < dep[top[v]]) swap(u, v);
    			u = fa[top[u]];
    		}
    		return dep[u] < dep[v] ? u : v;
    	}
    	int cmp(int u, int v) {
    		return (u > 0 ? beg[u] : lst[-u]) < (v > 0 ? beg[v] : lst[-v]);
    	}
    	LL calc() {
    		LL res = 0;
    		for(auto i : keyVertex) {
    			dp[i] = UpMin[i];
    			instack[i] = 1;
    			Tmp.push_back(i);
    		}
    		sort(keyVertex.begin(), keyVertex.end(), cmp);
    		rep(i, 1, keyVertex.size() - 1) {
    			int u = LCA(keyVertex[i], keyVertex[i - 1]);
    			if(!instack[u]) {
    				instack[u] = 1;
    				Tmp.push_back(u);
    			}
    		}
    		if(!instack[1]) {
    			instack[1] = 1;
    			Tmp.push_back(1);
    		}
    		rep(i, 0, Tmp.size() - 1) Tmp.push_back(-Tmp[i]);
    		sort(Tmp.begin(), Tmp.end(), cmp);
    		rep(i, 0, Tmp.size() - 1) {
    			if(Tmp[i] > 0) s_stack.push(Tmp[i]);
    			else {
    				int u = s_stack.top(); s_stack.pop();
    				instack[u] = 0; 
    				int Papa = s_stack.top();
    				if(u != 1) dp[Papa] += min(1ll * UpMin[u], dp[u]);
    				else { res = dp[u]; }
    				dp[u] = 0;
    			}
    		}
    		keyVertex.clear();
    		Tmp.clear();
    		return res;
    	}
    
    	void Main() {
    		rep(i, 1, read()) {
    			rep(j, 1, read()) keyVertex.push_back(read());
    			write(calc()), putchar('
    ');
    		}
    	}
    }
    int main() {
    #ifdef Qrsikno
    	freopen("BZOJ2286.in", "r", stdin);
    	freopen("BZOJ2286.out", "w", stdout);
    #endif
    	INIT :: Main();
    	SOLVE :: Main();
    #ifdef Qrsikno
    	debug("
    Running time: %.3lf(s)
    ", clock() * 1.0 / CLOCKS_PER_SEC);
    #endif
    	return IO.flush();
    }
    
  • 相关阅读:
    HDU_1016——素环问题DFS
    什么是REST?以及RESTful的实现
    WebApi系列~基于RESTful标准的Web Api
    理解RESTful架构
    国内技术管理人员批阅google的“春运交通图”项目
    项目质量量化考核建议
    设计模式在交易系统中的应用
    修改Chrome临时文件位置
    百度员工离职总结:如何做个好员工?
    Firebird数据库系统的开发团队
  • 原文地址:https://www.cnblogs.com/qrsikno/p/9816235.html
Copyright © 2011-2022 走看看