zoukankan      html  css  js  c++  java
  • 01背包问题

    (N) 件物品和一个容量是 (V)的背包。每件物品只能使用一次。

    (i)件物品的体积是 (vi),价值是 (wi)

    求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
    输出最大价值。

    输入格式

    第一行两个整数,(N)(V),用空格隔开,分别表示物品数量和背包容积。

    接下来有 (N) 行,每行两个整数 (vi),(w)i,用空格隔开,分别表示第 (i) 件物品的体积和价值。

    输出格式

    输出一个整数,表示最大价值。

    数据范围

    (0<N,V≤1000)

    (0<vi,wi≤1000)

    输入样例

    4 5
    1 2
    2 4
    3 4
    4 5
    

    输出样例:

    8
    

    二维方法

    1. 状态f[i][j]定义:前 (i) 个物品,背包容量 (j) 下的最优解(最大价值):
    • 当前的状态依赖于之前的状态,可以理解为从初始状态f[0][0] = 0开始决策,有 (N) 件物品,则需要 (N) 次决 策,每一次对第 (i) 件物品的决策,状态f[i][j]不断由之前的状态更新而来。
      (2)当前背包容量不够(j < v[i]),没得选,因此前 (i) 个物品最优解即为前 (i−1) 个物品最优解:

      对应代码:f[i][j] = f[i - 1][j]
      (3)当前背包容量够,可以选,因此需要决策选与不选第 (i) 个物品:

      选:f[i][j] = f[i - 1][j - v[i]] + w[i]
      不选:f[i][j] = f[i - 1][j]
      我们的决策是如何取到最大价值,因此以上两种情况取 max()
      代码如下:

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int MAXN = 1005;
    int v[MAXN];    // 体积
    int w[MAXN];    // 价值 
    int f[MAXN][MAXN];  // f[i][j], j体积下前i个物品的最大价值 
    
    int main() 
    {
        int n, m;   
        cin >> n >> m;
        for(int i = 1; i <= n; i++) 
            cin >> v[i] >> w[i];
    
        for(int i = 1; i <= n; i++) 
            for(int j = 1; j <= m; j++)
            {
                //  当前背包容量装不进第i个物品,则价值等于前i-1个物品
                if(j < v[i]) 
                    f[i][j] = f[i - 1][j];
                // 能装,需进行决策是否选择第i个物品
                else    
                    f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
            }           
    
        cout << f[n][m] << endl;
    
        return 0;
    }
    

    一维方法

    将状态f[i][j]优化到一维f[j],实际上只需要做一个等价变形。

    为什么可以这样变形呢?我们定义的状态f[i][j]可以求得任意合法的ij最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

    (1)状态f[j]定义:(N) 件物品,背包容量j下的最优解。

    (2)注意枚举背包容量j必须从m开始。

    (3)为什么一维情况下枚举背包容量需要逆序?在二维情况下,状态f[i][j]是由上一轮i - 1的状态得来的,f[i][j]f[i - 1][j]是独立的。而优化到一维后,如果我们还是正序,则有f[较小体积]更新到f[较大体积],则有可能本应该用第i-1轮的状态却用的是第i轮的状态。

    (4)例如,一维状态第i轮对体积为 (3) 的物品进行决策,则f[7]f[4]更新而来,这里的f[4]正确应该是f[i - 1][4],但从小到大枚举j这里的f[4]在第i轮计算却变成了f[i][4]。当逆序枚举背包容量j时,我们求f[7]同样由f[4]更新,但由于是逆序,这里的f[4]还没有在第i轮计算,所以此时实际计算的f[4]仍然是f[i - 1][4]

    (5)简单来说,一维情况正序更新状态f[j]需要用到前面计算的状态已经被「污染」,逆序则不会有这样的问题。

    状态转移方程为:f[j] = max(f[j], f[j - v[i]] + w[i]

    for(int i = 1; i <= n; i++) 
        for(int j = m; j >= 0; j--)
        {
            if(j < v[i]) 
                f[i][j] = f[i - 1][j];  // 优化前
                f[j] = f[j];            // 优化后,该行自动成立,可省略。
            else    
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);  // 优化前
                f[j] = max(f[j], f[j - v[i]] + w[i]);                   // 优化后
        }    
    

    实际上,只有当枚举的背包的容量>= v[i]时才会更新状态,因此我们可以修改循环终止条件进一步优化。

    for(int i = 1; i <= n; i++)
    {
        for(int j = m; j >= v[i]; j--)  
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    } 
    

    关于状态f[j]的补充说明
    二维下的状态定义f[i][j]是前 (i) 件物品,背包容量 (j) 下的最大价值。一维下,少了前 (i) 件物品这个维度,我们的代码中决策到第 (i) 件物品(循环到第i轮),f[j]就是前i轮已经决策的物品且背包容量 (j) 下的最大价值。

    因此当执行完循环结构后,由于已经决策了所有物品,f[j]就是所有物品背包容量 (j) 下的最大价值。即一维f[j]等价于二维f[n][j]

    优化输入

    我们注意到在处理数据时,我们是一个物品一个物品,一个一个体积的枚举。

    因此我们可以不必开两个数组记录体积和价值,而是边输入边处理。

    #include<bits/stdc++.h>
    
    using namespace std;
    
    const int MAXN = 1005;
    int f[MAXN];  // 
    
    int main() 
    {
        int n, m;   
        cin >> n >> m;
    
        for(int i = 1; i <= n; i++) {
            int v, w;
            cin >> v >> w;      // 边输入边处理
            for(int j = m; j >= v; j--)
                f[j] = max(f[j], f[j - v] + w);
        }
    
        cout << f[m] << endl;
    
        return 0;
    }
    

    原文地址

  • 相关阅读:
    GFS文件系统和在RedHat Linux下的配置
    FastDFS connect timed out
    大型高并发高负载网站的系统架构
    FastDFS 上传文件
    FastDFS常见命令
    FastDFS安装、配置、部署
    分布式文件系统FastDFS原理介绍
    Jenkins+Maven+Svn搭建持续集成环境持续集成和自动部署
    Java中的向上转型和向下转型
    Java中的final修饰符
  • 原文地址:https://www.cnblogs.com/qscgy/p/14728565.html
Copyright © 2011-2022 走看看