zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论

    E. Connected Components?

    You are given an undirected graph consisting of n vertices and edges. Instead of giving you the edges that exist in the graph, we give you m unordered pairs (x, y) such that there is no edge between x and y, and if some pair of vertices is not listed in the input, then there is an edge between these vertices.

    You have to find the number of connected components in the graph and the size of each component. A connected component is a set of vertices X such that for every two vertices from this set there exists at least one path in the graph connecting these vertices, but adding any other vertex to X violates this rule.

    Input

    The first line contains two integers n and m (1 ≤ n ≤ 200000, ).

    Then m lines follow, each containing a pair of integers x and y (1 ≤ x, y ≤ n, x ≠ y) denoting that there is no edge between x and y. Each pair is listed at most once; (x, y) and (y, x) are considered the same (so they are never listed in the same test). If some pair of vertices is not listed in the input, then there exists an edge between those vertices.

    Output

    Firstly print k — the number of connected components in this graph.

    Then print k integers — the sizes of components. You should output these integers in non-descending order.

    Example

    input
    5 5
    1 2
    3 4
    3 2
    4 2
    2 5
    output
    2
    1 4

    题意

    给你n个点的完全图,告诉你有m条边是不可连的。问你里面一共有多少个联通块,输出每个块的大小。

    题解

    https://www.cnblogs.com/qscqesze/p/11813351.html 一摸一样

    经验get

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 200005;
    int n,m;
    set<int>S[maxn];
    set<int>vis;
    int v[maxn];
    int dfs(int x){
    	int now = 1;
    	vector<int> ret;
    	for(int v:vis){
    		if(!S[x].count(v))
    			ret.push_back(v);
    	}
    	for(int i=0;i<ret.size();i++){
    		vis.erase(ret[i]);
    	}
    	for(int i=0;i<ret.size();i++){
    		v[ret[i]]=1;
    		now+=dfs(ret[i]);
    	}
    	return now;
    }
    int main(){
    	scanf("%d%d",&n,&m);
    	for(int i=0;i<m;i++){
    		int x,y;cin>>x>>y;
    		x--,y--;
    		S[x].insert(y);
    		S[y].insert(x);
    	}
    	vector<int> ans;
    	for(int i=0;i<n;i++){
    		vis.insert(i);
    	}
    	for(int i=0;i<n;i++){
    		if(!v[i]){
    			ans.push_back(dfs(i));
    		}
    	}
    	cout<<ans.size()<<endl;
    	sort(ans.begin(),ans.end());
    	for(int i=0;i<ans.size();i++){
    		cout<<ans[i]-1<<" ";
    	}
    	cout<<endl;
    }
  • 相关阅读:
    hbase分布式集群搭建
    hadoop分布式集群搭建
    cobbler koan自动重装系统
    nginx基础整理
    cobbler 自定义安装系统
    cobbler 自定义私有yum源
    cobbler自动安装系统
    [转]10+倍性能提升全过程--优酷账号绑定淘宝账号的TPS从500到5400的优化历程
    服务器性能调优(netstat监控大量ESTABLISHED连接与Time_Wait连接问题)
    LINUX下解决netstat查看TIME_WAIT状态过多问题
  • 原文地址:https://www.cnblogs.com/qscqesze/p/11814113.html
Copyright © 2011-2022 走看看