zoukankan      html  css  js  c++  java
  • Codeforces Round #256 (Div. 2) E Divisors

    E. Divisors

    Bizon the Champion isn't just friendly, he also is a rigorous coder.

    Let's define function f(a), where a is a sequence of integers. Function f(a) returns the following sequence: first all divisors of a1 go in the increasing order, then all divisors of a2 go in the increasing order, and so on till the last element of sequence a. For example, f([2, 9, 1]) = [1, 2, 1, 3, 9, 1].

    Let's determine the sequence Xi, for integer i (i ≥ 0): X0 = [X] ([X] is a sequence consisting of a single number X), Xi = f(Xi - 1) (i > 0). For example, at X = 6 we get X0 = [6], X1 = [1, 2, 3, 6], X2 = [1, 1, 2, 1, 3, 1, 2, 3, 6].

    Given the numbers X and k, find the sequence Xk. As the answer can be rather large, find only the first 105 elements of this sequence.

    Input

    A single line contains two space-separated integers — X (1 ≤ X ≤ 1012) and k (0 ≤ k ≤ 1018).

    Output

    Print the elements of the sequence Xk in a single line, separated by a space. If the number of elements exceeds 105, then print only the first 105 elements.

    Sample test(s)
    Input
    6 1
    Output
    1 2 3 6 
    Input
    4 2
    Output
    1 1 2 1 2 4 
    Input
    10 3
    Output
    1 1 1 2 1 1 5 1 1 2 1 5 1 2 5 10 
     1 #include<stdio.h>
     2 #include<map>
     3 #include<algorithm>
     4 #define MAXN 20000000
     5 using namespace std;
     6 typedef long long LL;
     7 LL ys[9000];int tot=0;int tt2=0;
     8 int tail[9000];int head[9000];
     9 int aft[MAXN];LL p[MAXN];
    10 LL n,k;
    11 map<LL,int>bh;
    12 void line(int j,int i)
    13 {
    14      tt2++;if(!tail[j])head[j]=tt2;p[tt2]=i;aft[tail[j]]=tt2;tail[j]=tt2;
    15 }
    16 void init()
    17 {
    18      for(LL i=1;i*i<=n;i++)
    19      if(n%i==0)
    20      {
    21                ys[++tot]=i;
    22                if(i*i!=n)
    23                ys[++tot]=n/i;
    24                }
    25      sort(ys+1,ys+1+tot);
    26      for(int i=1;i<=tot;i++)bh[ys[i]]=i;
    27      for(int i=1;i<=tot;i++)
    28      for(int j=1;j<=i;j++)
    29      if(ys[i]%ys[j]==0)line(i,j);
    30 }
    31 int dfs(int now,LL dep,int need)
    32 {
    33     if(ys[now]==1)
    34     {
    35                   printf("1 ");
    36                   return 1;
    37                   }
    38      if(dep==k)
    39      {
    40                int us=need;
    41                for(int u=head[now];u&&need;need--,u=aft[u])
    42                printf("%I64d ",ys[p[u]]);
    43                return us-need;
    44                }
    45      int us=need;
    46      for(int u=head[now];u&&need;need-=dfs(p[u],dep+1,need),u=aft[u]);
    47      return us-need;
    48 }
    49 int main()
    50 {
    51     scanf("%I64d%I64d",&n,&k);if(k>100000)k=100000;
    52     init();
    53     if(!k)
    54     {
    55           printf("%I64d
    ",n);
    56           return 0;
    57           }
    58     dfs(bh[n],1,100000);
    59     return 0;
    60 }
    View Code
  • 相关阅读:
    [WCF安全系列]从两种安全模式谈起
    为自定义配置的编辑提供”智能感知”的支持
    在Entity Framework中使用存储过程(二):具有继承关系实体的存储过程如何定义?
    [WCF安全系列]实例演示:TLS/SSL在WCF中的应用[HTTPS]
    [WCF安全系列]谈谈WCF的客户端认证[Windows认证]
    在Entity Framework中使用存储过程(三):逻辑删除的实现与自增长列值返回
    [转] Leaving patterns & practices
    两个简单的扩展方法:TrimPrefix和TrimSuffix
    Oracle 系统表
    让IoC动态解析自定义配置(提供基于Unity的实现)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/3852510.html
Copyright © 2011-2022 走看看