zoukankan      html  css  js  c++  java
  • Codeforces Round #293 (Div. 2) D. Ilya and Escalator 概率DP

    D. Ilya and Escalator
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor.

    Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1 - p), paralyzed by his fear of escalators and making the whole queue wait behind him.

    Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i - 1 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds.

    Your task is to help him solve this complicated task.

    Input

    The first line of the input contains three numbers n, p, t (1 ≤ n, t ≤ 2000, 0 ≤ p ≤ 1). Numbers n and t are integers, number p is real, given with exactly two digits after the decimal point.

    Output

    Print a single real number — the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10 - 6.

    Sample test(s)
    Input
    1 0.50 1
    Output
    0.5
    Input
    1 0.50 4
    Output
    0.9375
    Input
    4 0.20 2
    Output
    0.4
    题意:给你一个队列,然后每个时刻,有P的概率会离开一个人,然后问你在t时刻,离开人的期望是多少
    题解:dp[i][j]表示第i时刻有j个人离开
    转移方程:dp[i][j]=(1-p)*dp[i-1][j]+p*dp[i-1][j-1]
    double dp[maxn][maxn];//表示第i秒有j个人离开
    int main()
    {
            memset(dp,0,sizeof(dp));
            int n,t;
            double p;
            cin>>n>>p>>t;
            dp[0][0]=1;
            for(int i=1;i<=t;i++)
            {
                    dp[i][0]=(1-p)*dp[i-1][0];
                    for(int j=1;j<n;j++)
                    {
                            dp[i][j]=p*dp[i-1][j-1]+(1-p)*dp[i-1][j];
                    }
                    dp[i][n]=p*dp[i-1][n-1]+dp[i-1][n];
            }
            double ans=0;
            for(int i=0;i<=n;i++)
            {
                    ans+=i*dp[t][i];
            }
            printf("%.6f
    ",ans);
    }
  • 相关阅读:
    win10下VMware15运行ubuntu18.04无法和主机之间复制粘贴问题
    Redis的五种数据类型
    celery的入门使用
    Django/Flask的一些实现方法
    Python3实现简单的钉钉机器人调用
    装饰者模式
    pyhdfs安装
    使用setup.py安装python包和卸载python包的方法
    zookeeper搭建
    S3C6410裸奔之旅——RVDS2.2编译、仿真、调试过程 LED流水灯---转的
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4305580.html
Copyright © 2011-2022 走看看