zoukankan      html  css  js  c++  java
  • hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路

    Delay Constrained Maximum Capacity Path

    Time Limit: 20 Sec

    Memory Limit: 256 MB

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=1839

    Description

    Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.

    Input


    The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different integers between 1 and N. There will exist at most one edge between any two vertices.

    Output

    For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the factory obbeying the travel time constraint.

    Sample Input

    2
    2 1 10
    1 2 13 10
    4 4 20
    1 2 1000 15
    2 4 999 6
    1 3 100 15
    3 4 99 4

    Sample Output

    13
    99

    HINT

    题意

    有N个点,点1为珍贵矿物的采矿区, 点N为加工厂,有M条双向连通的边连接这些点。走每条边的运输容量为C,运送时间为D。
    他们要选择一条从1到N的路径运输, 这条路径的运输总时间要在T之内,在这个前提之下,要让这条路径的运输容量尽可能地大。
    一条路径的运输容量取决与这条路径中的运输容量最小的那条边。

    题解:

    二分cap,然后直接最短路判断就好了

    代码:

    //qscqesze
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <set>
    #include <vector>
    #include <sstream>
    #include <queue>
    #include <typeinfo>
    #include <fstream>
    #include <map>
    #include <stack>
    typedef long long ll;
    using namespace std;
    //freopen("D.in","r",stdin);
    //freopen("D.out","w",stdout);
    #define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
    #define test freopen("test.txt","r",stdin)  
    #define maxn 500001
    #define mod 10007
    #define eps 1e-9
    int Num;
    char CH[20];
    const int inf=0x7fffffff;
    const ll infll = 0x3f3f3f3f3f3f3f3fLL;
    inline ll read()
    {
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    inline void P(int x)
    {
        Num=0;if(!x){putchar('0');puts("");return;}
        while(x>0)CH[++Num]=x%10,x/=10;
        while(Num)putchar(CH[Num--]+48);
        puts("");
    }
    //**************************************************************************************
    
    int n,m,t;
    struct node
    {
        int x;
        ll y;
        int z;
    };
    bool cmp(ll a,ll b)
    {
        return a>b;
    }
    vector<node> e[maxn];
    ll c[maxn];
    int inq[maxn];
    int d[maxn];
    int solve(int x)
    {
        for(int i=0;i<=n;i++)
            d[i]=inf;
        d[1]=0;
        queue<int> q;
        q.push(1);
        while(!q.empty())
        {
            int v=q.front();
            q.pop();
            for(int i=0;i<e[v].size();i++)
            {
                if(e[v][i].y>=x)
                {
                    if(d[e[v][i].x]>d[v]+e[v][i].z)
                    {
                        d[e[v][i].x]=d[v]+e[v][i].z;
                        q.push(e[v][i].x);
                    }
                }
            }
        }
        return d[n];
    }
    int main()
    {
        //test;
        int T=read();
        while(T--)
        {
            n=read(),m=read(),t=read();
            for(int i=0;i<maxn;i++)
                e[i].clear();
            memset(c,0,sizeof(c));
            for(int i=0;i<m;i++)
            {
                int a=read(),b=read();
                c[i]=read();
                int d=read();
                e[a].push_back((node){b,c[i],d});
                e[b].push_back((node){a,c[i],d});
            }
            sort(c,c+m,cmp);
            int l=0,r=m-1,mid;
            while(l<r)
            {
                mid=(l+r)/2;
                int tmp=c[mid];
                if(solve(tmp)>t)
                    l=mid+1;
                else
                    r=mid;
            }
            cout<<c[l]<<endl;
        }
    }

     

  • 相关阅读:
    git 常用操作命令行
    Mysql 命令行...
    bootstrap
    10.11 android输入系统_补充知识_activity_window_decor_view关系
    10.10 android输入系统_APP获得并处理输入事件流程
    10.9 android输入系统_APP跟输入系统建立联系和Dispatcher线程_分发dispatch
    10.8 android输入系统_实战_使用GlobalKey一键启动程序
    10.7 android输入系统_Dispatcher线程情景分析_Reader线程传递事件和dispatch前处理
    10.6 android输入系统_Dispatcher线程_总体框架
    10.5 android输入系统_Reader线程_使用EventHub读取事件和核心类及配置文件_实验_分析
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4568939.html
Copyright © 2011-2022 走看看