zoukankan      html  css  js  c++  java
  • Codeforces Gym 100610 Problem E. Explicit Formula 水题

    Problem E. Explicit Formula

    Time Limit: 1 Sec  

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/gym/100610

    Description


    Consider 10 Boolean variables x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10. Consider all pairs and triplets of distinct variables among these ten. (There are 45 pairs and 120 triplets.) Count the number of pairs and triplets that contain at least one variable equal to 1. Set f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 1 if this number is odd and f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = 0 if this number is even. Here’s an explicit formula that represents the function f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) correctly: f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) = (x1 ∨ x2)⊕(x1 ∨ x3)⊕(x1 ∨ x4)⊕(x1 ∨ x5)⊕(x1 ∨ x6)⊕(x1 ∨ x7)⊕ (x1 ∨ x8) ⊕ (x1 ∨ x9) ⊕ (x1 ∨ x10) ⊕ (x2 ∨ x3) ⊕ (x2 ∨ x4) ⊕ (x2 ∨ x5) ⊕ (x2 ∨ x6) ⊕ (x2 ∨ x7) ⊕ (x2 ∨ x8) ⊕ (x2 ∨ x9)⊕(x2 ∨ x10)⊕(x3 ∨ x4)⊕(x3 ∨ x5)⊕(x3 ∨ x6)⊕(x3 ∨ x7)⊕(x3 ∨ x8)⊕(x3 ∨ x9)⊕(x3 ∨ x10)⊕ (x4 ∨ x5) ⊕ (x4 ∨ x6) ⊕ (x4 ∨ x7) ⊕ (x4 ∨ x8) ⊕ (x4 ∨ x9) ⊕ (x4 ∨ x10) ⊕ (x5 ∨ x6) ⊕ (x5 ∨ x7) ⊕ (x5 ∨ x8) ⊕ (x5 ∨ x9)⊕(x5 ∨ x10)⊕(x6 ∨ x7)⊕(x6 ∨ x8)⊕(x6 ∨ x9)⊕(x6 ∨ x10)⊕(x7 ∨ x8)⊕(x7 ∨ x9)⊕(x7 ∨ x10)⊕ (x8 ∨ x9) ⊕ (x8 ∨ x10) ⊕ (x9 ∨ x10) ⊕ (x1 ∨ x2 ∨ x3) ⊕ (x1 ∨ x2 ∨ x4) ⊕ (x1 ∨ x2 ∨ x5) ⊕ (x1 ∨ x2 ∨ x6) ⊕ (x1 ∨ x2 ∨ x7) ⊕ (x1 ∨ x2 ∨ x8) ⊕ (x1 ∨ x2 ∨ x9) ⊕ (x1 ∨ x2 ∨ x10) ⊕ (x1 ∨ x3 ∨ x4) ⊕ (x1 ∨ x3 ∨ x5) ⊕ (x1 ∨ x3 ∨ x6) ⊕ (x1 ∨ x3 ∨ x7) ⊕ (x1 ∨ x3 ∨ x8) ⊕ (x1 ∨ x3 ∨ x9) ⊕ (x1 ∨ x3 ∨ x10) ⊕ (x1 ∨ x4 ∨ x5) ⊕ (x1 ∨ x4 ∨ x6) ⊕ (x1 ∨ x4 ∨ x7) ⊕ (x1 ∨ x4 ∨ x8) ⊕ (x1 ∨ x4 ∨ x9) ⊕ (x1 ∨ x4 ∨ x10) ⊕ (x1 ∨ x5 ∨ x6) ⊕ (x1 ∨ x5 ∨ x7) ⊕ (x1 ∨ x5 ∨ x8) ⊕ (x1 ∨ x5 ∨ x9) ⊕ (x1 ∨ x5 ∨ x10) ⊕ (x1 ∨ x6 ∨ x7) ⊕ (x1 ∨ x6 ∨ x8) ⊕ (x1 ∨ x6 ∨ x9) ⊕ (x1 ∨ x6 ∨ x10) ⊕ (x1 ∨ x7 ∨ x8) ⊕ (x1 ∨ x7 ∨ x9) ⊕ (x1 ∨ x7 ∨ x10) ⊕ (x1 ∨ x8 ∨ x9) ⊕ (x1 ∨ x8 ∨ x10) ⊕ (x1 ∨ x9 ∨ x10) ⊕ (x2 ∨ x3 ∨ x4) ⊕ (x2 ∨ x3 ∨ x5) ⊕ (x2 ∨ x3 ∨ x6) ⊕ (x2 ∨ x3 ∨ x7) ⊕ (x2 ∨ x3 ∨ x8) ⊕ (x2 ∨ x3 ∨ x9) ⊕ (x2 ∨ x3 ∨ x10) ⊕ (x2 ∨ x4 ∨ x5) ⊕ (x2 ∨ x4 ∨ x6) ⊕ (x2 ∨ x4 ∨ x7) ⊕ (x2 ∨ x4 ∨ x8) ⊕ (x2 ∨ x4 ∨ x9) ⊕ (x2 ∨ x4 ∨ x10) ⊕ (x2 ∨ x5 ∨ x6) ⊕ (x2 ∨ x5 ∨ x7) ⊕ (x2 ∨ x5 ∨ x8) ⊕ (x2 ∨ x5 ∨ x9) ⊕ (x2 ∨ x5 ∨ x10) ⊕ (x2 ∨ x6 ∨ x7) ⊕ (x2 ∨ x6 ∨ x8) ⊕ (x2 ∨ x6 ∨ x9) ⊕ (x2 ∨ x6 ∨ x10) ⊕ (x2 ∨ x7 ∨ x8) ⊕ (x2 ∨ x7 ∨ x9) ⊕ (x2 ∨ x7 ∨ x10) ⊕ (x2 ∨ x8 ∨ x9) ⊕ (x2 ∨ x8 ∨ x10) ⊕ (x2 ∨ x9 ∨ x10) ⊕ (x3 ∨ x4 ∨ x5) ⊕ (x3 ∨ x4 ∨ x6) ⊕ (x3 ∨ x4 ∨ x7) ⊕ (x3 ∨ x4 ∨ x8) ⊕ (x3 ∨ x4 ∨ x9) ⊕ (x3 ∨ x4 ∨ x10) ⊕ (x3 ∨ x5 ∨ x6) ⊕ (x3 ∨ x5 ∨ x7) ⊕ (x3 ∨ x5 ∨ x8) ⊕ (x3 ∨ x5 ∨ x9) ⊕ (x3 ∨ x5 ∨ x10) ⊕ (x3 ∨ x6 ∨ x7) ⊕ (x3 ∨ x6 ∨ x8) ⊕ (x3 ∨ x6 ∨ x9) ⊕ (x3 ∨ x6 ∨ x10) ⊕ (x3 ∨ x7 ∨ x8) ⊕ (x3 ∨ x7 ∨ x9) ⊕ (x3 ∨ x7 ∨ x10) ⊕ (x3 ∨ x8 ∨ x9) ⊕ (x3 ∨ x8 ∨ x10) ⊕ (x3 ∨ x9 ∨ x10) ⊕ (x4 ∨ x5 ∨ x6) ⊕ (x4 ∨ x5 ∨ x7) ⊕ (x4 ∨ x5 ∨ x8) ⊕ (x4 ∨ x5 ∨ x9) ⊕ (x4 ∨ x5 ∨ x10) ⊕ (x4 ∨ x6 ∨ x7) ⊕ (x4 ∨ x6 ∨ x8) ⊕ (x4 ∨ x6 ∨ x9) ⊕ (x4 ∨ x6 ∨ x10) ⊕ (x4 ∨ x7 ∨ x8) ⊕ (x4 ∨ x7 ∨ x9) ⊕ (x4 ∨ x7 ∨ x10) ⊕ (x4 ∨ x8 ∨ x9) ⊕ (x4 ∨ x8 ∨ x10) ⊕ (x4 ∨ x9 ∨ x10) ⊕ (x5 ∨ x6 ∨ x7) ⊕ (x5 ∨ x6 ∨ x8) ⊕ (x5 ∨ x6 ∨ x9) ⊕ (x5 ∨ x6 ∨ x10) ⊕ (x5 ∨ x7 ∨ x8) ⊕ (x5 ∨ x7 ∨ x9) ⊕ (x5 ∨ x7 ∨ x10) ⊕ (x5 ∨ x8 ∨ x9) ⊕ (x5 ∨ x8 ∨ x10) ⊕ (x5 ∨ x9 ∨ x10) ⊕ (x6 ∨ x7 ∨ x8) ⊕ (x6 ∨ x7 ∨ x9) ⊕ (x6 ∨ x7 ∨ x10) ⊕ (x6 ∨ x8 ∨ x9) ⊕ (x6 ∨ x8 ∨ x10) ⊕ (x6 ∨ x9 ∨ x10) ⊕ (x7 ∨ x8 ∨ x9) ⊕ (x7 ∨ x8 ∨ x10) ⊕ (x7 ∨ x9 ∨ x10) ⊕ (x8 ∨ x9 ∨ x10) In this formula ∨ stands for logical or, and ⊕ stands for exclusive or (xor). Remember that in C++ and Java these two binary operators are denoted as “||” and “^”. Given the values of x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, calculate the value of f(x1, x2, . . . , x10).

    Input

    The input file contains 10 numbers x1, x2, x3, x4, x5, x6, x7, x8, x9, and x10. Each of them is either 0 or 1.

    Output

    Output a single value — f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10).

    Sample Input

    1 0 0 1 0 0 1 0 0 1

    Sample Output

    0

    HINT

     

    题意

    就求题目给的那个式子的答案是多少

    题解:

    ctrl+f 把符号替换一下就好了……

    代码:

    //qscqesze
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <set>
    #include <bitset>
    #include <vector>
    #include <sstream>
    #include <queue>
    #include <typeinfo>
    #include <fstream>
    #include <map>
    #include <stack>
    typedef long long ll;
    using namespace std;
    //freopen("D.in","r",stdin);
    //freopen("D.out","w",stdout);
    #define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
    #define maxn 110000
    #define mod 10007
    #define eps 1e-9
    #define pi 3.1415926
    int Num;
    //const int inf=0x7fffffff;   //§ß§é§à§é¨f§³
    const ll Inf=0x3f3f3f3f3f3f3f3fll;
    inline ll read()
    {
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    //*************************************************************************************
    
    ll x1,x2,x3,x4,x5,x6,x7,x8,x9,x10;
    int main()
    {
        freopen("explicit.in","r",stdin);
        freopen("explicit.out","w",stdout);
        cin>>x1>>x2>>x3>>x4>>x5>>x6>>x7>>x8>>x9>>x10;
    
        cout<<((x1 || x2)^(x1 || x3)^(x1 || x4)^(x1 || x5)^(x1 || x6)^(x1 || x7)^
    (x1 || x8) ^ (x1 || x9) ^ (x1 || x10) ^ (x2 || x3) ^ (x2 || x4) ^ (x2 || x5) ^ (x2 || x6) ^ (x2 || x7) ^ (x2 || x8) ^
    (x2 || x9)^(x2 || x10)^(x3 || x4)^(x3 || x5)^(x3 || x6)^(x3 || x7)^(x3 || x8)^(x3 || x9)^(x3 || x10)^
    (x4 || x5) ^(x4 || x6) ^ (x4 || x7) ^ (x4 || x8) ^ (x4 || x9) ^ (x4 || x10) ^ (x5 || x6) ^ (x5 || x7) ^ (x5 || x8) ^
    (x5 || x9)^(x5 || x10)^(x6 || x7)^(x6 || x8)^(x6 || x9)^(x6 || x10)^(x7 || x8)^(x7 || x9)^(x7 || x10)^
    (x8 || x9) ^ (x8 || x10) ^(x9 || x10) ^ (x1 || x2 || x3) ^ (x1 || x2 || x4) ^ (x1 || x2 || x5) ^ (x1 || x2 || x6) ^
    (x1 || x2 || x7) ^ (x1 || x2 || x8) ^ (x1 || x2 || x9) ^ (x1 || x2 || x10) ^ (x1 || x3 || x4) ^ (x1 || x3 || x5) ^
    (x1 || x3 || x6) ^ (x1 || x3 || x7) ^ (x1 || x3 || x8) ^ (x1 || x3 || x9) ^ (x1 || x3 || x10) ^ (x1 || x4 || x5) ^
    (x1 || x4 || x6) ^ (x1 || x4 || x7) ^ (x1 || x4 || x8) ^ (x1 || x4 || x9) ^ (x1 || x4 || x10) ^ (x1 || x5 || x6) ^
    (x1 || x5 || x7) ^ (x1 || x5 || x8) ^ (x1 || x5 || x9) ^ (x1 || x5 || x10) ^ (x1 || x6 || x7) ^ (x1 || x6 || x8) ^
    (x1 || x6 || x9) ^ (x1 || x6 || x10) ^ (x1 || x7 || x8) ^ (x1 || x7 || x9) ^ (x1 || x7 || x10) ^ (x1 || x8 || x9) ^
    (x1 || x8 || x10) ^ (x1 || x9 || x10) ^ (x2 || x3 || x4) ^ (x2 || x3 || x5) ^ (x2 || x3 || x6) ^ (x2 || x3 || x7) ^
    (x2 || x3 || x8) ^ (x2 || x3 || x9) ^ (x2 || x3 || x10) ^ (x2 || x4 || x5) ^ (x2 || x4 || x6) ^ (x2 || x4 || x7) ^
    (x2 || x4 || x8) ^ (x2 || x4 || x9) ^ (x2 || x4 || x10) ^ (x2 || x5 || x6) ^ (x2 || x5 || x7) ^ (x2 || x5 || x8) ^
    (x2 || x5 || x9) ^ (x2 || x5 || x10) ^ (x2 || x6 || x7) ^ (x2 || x6 || x8) ^ (x2 || x6 || x9) ^ (x2 || x6 || x10) ^
    (x2 || x7 || x8) ^ (x2 || x7 || x9) ^ (x2 || x7 || x10) ^ (x2 || x8 || x9) ^ (x2 || x8 || x10) ^ (x2 || x9 || x10) ^
    (x3 || x4 || x5) ^ (x3 || x4 || x6) ^ (x3 || x4 || x7) ^ (x3 || x4 || x8) ^ (x3 || x4 || x9) ^ (x3 || x4 || x10) ^
    (x3 || x5 || x6) ^ (x3 || x5 || x7) ^ (x3 || x5 || x8) ^ (x3 || x5 || x9) ^ (x3 || x5 || x10) ^ (x3 || x6 || x7) ^
    (x3 || x6 || x8) ^ (x3 || x6 || x9) ^ (x3 || x6 || x10) ^ (x3 || x7 || x8) ^ (x3 || x7 || x9) ^ (x3 || x7 || x10) ^
    (x3 || x8 || x9) ^ (x3 || x8 || x10) ^ (x3 || x9 || x10) ^ (x4 || x5 || x6) ^ (x4 || x5 || x7) ^ (x4 || x5 || x8) ^
    (x4 || x5 || x9) ^ (x4 || x5 || x10) ^ (x4 || x6 || x7) ^ (x4 || x6 || x8) ^ (x4 || x6 || x9) ^ (x4 || x6 || x10) ^
    (x4 || x7 || x8) ^ (x4 || x7 || x9) ^ (x4 || x7 || x10) ^ (x4 || x8 || x9) ^ (x4 || x8 || x10) ^ (x4 || x9 || x10) ^
    (x5 || x6 || x7) ^ (x5 || x6 || x8) ^ (x5 || x6 || x9) ^ (x5 || x6 || x10) ^ (x5 || x7 || x8) ^ (x5 || x7 || x9) ^
    (x5 || x7 || x10) ^ (x5 || x8 || x9) ^ (x5 || x8 || x10) ^ (x5 || x9 || x10) ^ (x6 || x7 || x8) ^ (x6 || x7 || x9) ^
    (x6 || x7 || x10) ^ (x6 || x8 || x9) ^ (x6 || x8 || x10) ^ (x6 || x9 || x10) ^ (x7 || x8 || x9) ^ (x7 || x8 || x10) ^
    (x7 || x9 || x10) ^ (x8 || x9 || x10)) <<endl;
    
    
    }
  • 相关阅读:
    ACM/ICPC ZOJ1006-Do the Untwist 解题代码
    ACM/ICPC ZOJ1003-Crashing Balloon 解题代码
    数据结构(二)二叉搜索树-非递归实现遍历
    数据结构(一)二叉搜索树-递归实现
    Spark系列(三)SparkContext分析
    Docker系列(九)Kubernetes安装
    Docker系列(八)Kubernetes介绍
    Docker系列(七)Shipyard安装及介绍
    Docker系列(六)路由打通网络示例
    Esper系列(十四)Contained-Event Selection
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4783620.html
Copyright © 2011-2022 走看看