zoukankan      html  css  js  c++  java
  • Codeforces Round #324 (Div. 2) B. Kolya and Tanya 快速幂

    B. Kolya and Tanya

    Time Limit: 1 Sec  

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/contest/584/problem/B

    Description

    Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.

    More formally, there are 3n gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3n - 1, let the gnome sitting on the i-th place have ai coins. If there is an integer i (0 ≤ i < n) such that ai + ai + n + ai + 2n ≠ 6, then Tanya is satisfied.

    Count the number of ways to choose ai so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109 + 7. Two ways, a and b, are considered distinct if there is index i (0 ≤ i < 3n), such that ai ≠ bi (that is, some gnome got different number of coins in these two ways).

    Input

    A single line contains number n (1 ≤ n ≤ 105) — the number of the gnomes divided by three.

    Output

    Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109 + 7.

    Sample Input

    1

    Sample Output

    20

    HINT

    题意

    给你一个环,环上有3n个点,每个点的权值可以是1-3,然后问你满足a[i]+a[i+1]+a[i+2]!=6的方案有多少种

    题解:

    反面,a[i]+a[i+1]+a[i+2]=6的情况这三个数的取值一共有7种

    那么答案就是 3^(3n) - 7^n就好了

    代码:

    #include<stdio.h>
    #include<iostream>
    #include<math.h>
    
    using namespace std;
    
    #define mod 1000000007
    long long quickpow(long long  m,long long n,long long k)
    {
        long long b = 1;
        while (n > 0)
        {
              if (n & 1)
                 b = (b*m)%k;
              n = n >> 1 ;
              m = (m*m)%k;
        }
        return b;
    }
    
    
    int main()
    {
        long long n;
        cin>>n;
        cout<<(quickpow(3,3*n,mod) - quickpow(7,n,mod) + mod) % mod <<endl;
    }
  • 相关阅读:
    考试总结 模拟69
    考试总结 模拟68
    考试总结 模拟67
    考试总结 模拟66
    20190722 NOIP模拟测试7 考后反思
    20190719 NOIP模拟测试6 (考后反思)
    星际旅行(欧拉路,欧拉回路)(20190718 NOIP模拟测试5)
    20190718 NOIP模拟测试5 考后反思
    [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)
    奇袭(单调栈+分治+桶排)(20190716 NOIP模拟测试4)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4858394.html
Copyright © 2011-2022 走看看