zoukankan      html  css  js  c++  java
  • Codeforces Round #331 (Div. 2) B. Wilbur and Array 水题

    B. Wilbur and Array

    Time Limit: 20 Sec

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/contest/596/problem/B

    Description

    Wilbur the pig is tinkering with arrays again. He has the array a1, a2, ..., an initially consisting of n zeros. At one step, he can choose any index i and either add 1 to all elements ai, ai + 1, ... , an or subtract 1 from all elements ai, ai + 1, ..., an. His goal is to end up with the array b1, b2, ..., bn.

    Of course, Wilbur wants to achieve this goal in the minimum number of steps and asks you to compute this value.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the length of the array ai. Initially ai = 0 for every position i, so this array is not given in the input.

    The second line of the input contains n integers b1, b2, ..., bn ( - 109 ≤ bi ≤ 109).

    Output

    Print the minimum number of steps that Wilbur needs to make in order to achieve ai = bi for all i.

    Sample Input

    5
    1 2 3 4 5

    Sample Output

    5

    HINT

    题意

    a[i]数组一开始都是0

    然后你可以使得i-n都加1,也可以使得i-n都减一

    然后问你最少操作数

    题解:

    扫一遍就好了,直接暴力,注意会爆int

    代码

    #include<iostream>
    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    using namespace std;
    #define maxn 200005
    long long b[maxn];
    int main()
    {
        int n;cin>>n;
        for(int i=0;i<n;i++)
            scanf("%lld",&b[i]);
        long long now = 0;
        long long ans = 0;
        for(int i=0;i<n;i++)
        {
            if(now!=b[i])
            {
                ans+= abs(b[i]-now);
                now = b[i];
            }
        }
        printf("%lld
    ",ans);
    }
  • 相关阅读:
    Redis必须注意的慢查询问题
    使用kuernetes提供高可用的logstash服务
    使用kuernetes提供高可用的kibana服务
    Docker指定multiple Insecure registry的方法
    ELK系统中kibana展示数据的时区问题
    ElasticSearch快照备份及恢复
    离线安装redis集群
    Elasticsearch静态集群配置
    LCM的个数 (LCM Cardinality,UVa 10892)
    幂和阶乘 (Again Prime?No time.,UVa 10780)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4967948.html
Copyright © 2011-2022 走看看