zoukankan      html  css  js  c++  java
  • HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain

    Time Limit: 20 Sec

    Memory Limit: 256 MB

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=5029

    Description

    The soil is cracking up because of the drought and the rabbit kingdom is facing a serious famine. The RRC(Rabbit Red Cross) organizes the distribution of relief grain in the disaster area. 

    We can regard the kingdom as a tree with n nodes and each node stands for a village. The distribution of the relief grain is divided into m phases. For each phases, the RRC will choose a path of the tree and distribute some relief grain of a certain type for every village located in the path. 

    There are many types of grains. The RRC wants to figure out which type of grain is distributed the most times in every village.

    Input

    The input consists of at most 25 test cases. 

    For each test case, the first line contains two integer n and m indicating the number of villages and the number of phases. 

    The following n-1 lines describe the tree. Each of the lines contains two integer x and y indicating that there is an edge between the x-th village and the y-th village. 
       
    The following m lines describe the phases. Each line contains three integer x, y and z indicating that there is a distribution in the path from x-th village to y-th village with grain of type z. (1 <= n <= 100000, 0 <= m <= 100000, 1 <= x <= n, 1 <= y <= n, 1 <= z <= 100000) 

    The input ends by n = 0 and m = 0.

    Output

    For each test case, output n integers. The i-th integer denotes the type that is distributed the most times in the i-th village. If there are multiple types which have the same times of distribution, output the minimal one. If there is no relief grain in a village, just output 0.

    Sample Input

    2 4
    1 2
    1 1 1
    1 2 2
    2 2 2
    2 2 1
    5 3
    1 2
    3 1
    3 4
    5 3
    2 3 3
    1 5 2
    3 3 3
    0 0

    Sample Output

    1
    2
    2
    3
    3
    0
    2

    HINT

    题意

    有n个点的树,有m次操作

    操作是在x-y的链上的每一个点,都增加一个W

    然后让你输出每个点出现次数最多的数是什么

    题解:

    看到链状,很显然就是树链剖分

    我们对于每个询问都按照lca去打上标记,就G[u].push_back(v,1),G[v].push_back(v,-1)这种

    打完标记之后,我们再按照树链剖分的顺序去处理这些标记就好了

    代码:

    #include <iostream>
    #include <string.h>
    #include <algorithm>
    #include <stdio.h>
    #include <math.h>
    #include <vector>
    using namespace std;
    const int N=800010;
    const int INF=1<<30;
    
    int n,tim;
    vector<pair<int,int> >G[100050];
    long long num[N];
    int siz[N],top[N],son[N];
    int dep[N],tid[N],Rank[N],fa[N];
    int head[N],to[2*N],Next[2*N],edge;
    int flag = 0;
    struct Edge
    {
        int u,v;
    };
    Edge tmp[2*N];
    int ans[N];
    void Init()
    {
        memset(head,-1,sizeof(head));
        memset(son,-1,sizeof(son));
        tim=0;
        edge=0;
        for(int i=0;i<100050;i++)
            G[i].clear();
        memset(ans,0,sizeof(ans));
    }
    
    void addedge(int u,int v)
    {
        to[edge]=v,Next[edge]=head[u],head[u]=edge++;
        to[edge]=u,Next[edge]=head[v],head[v]=edge++;
    }
    
    //树链剖分部分
    void dfs1(int u,int father,int d)
    {
        dep[u]=d;
        fa[u]=father;
        siz[u]=1;
        for(int i=head[u]; ~i; i=Next[i])
        {
            int v=to[i];
            if(v!=father)
            {
                dfs1(v,u,d+1);
                siz[u]+=siz[v];
                if(son[u]==-1||siz[v]>siz[son[u]])
                    son[u]=v;
            }
        }
    }
    
    void dfs2(int u,int tp)
    {
        top[u]=tp;
        tid[u]=++tim;
        Rank[tid[u]]=u;
        if(son[u]==-1) return;
        dfs2(son[u],tp);
        for(int i=head[u]; ~i; i=Next[i])
        {
            int v=to[i];
            if(v!=son[u]&&v!=fa[u])
                dfs2(v,v);
        }
    }
    
    
    
    
    void Do(int l,int r,int x)
    {
        //cout<<l<<" "<<r<<endl;
        G[l].push_back(make_pair(x,1));
        G[r].push_back(make_pair(x,-1));
    }
    
    void solve(int x,int y,int val)
    {
        while(top[x]!=top[y])
        {
            if(dep[top[x]]<dep[top[y]]) swap(x,y);
            Do(top[x],x,val);
            x=fa[top[x]];
        }
        if(dep[x]>dep[y]) swap(x,y);
        Do(x,y,val);
    }
    /////////////////////////////////////////////////////////线段树
    
    typedef int SgTreeDataType;
    struct treenode
    {
      int L , R  ;
      SgTreeDataType Max1 , lazy ,Max2;
    };
    
    treenode tree[N];
    
    inline void build_tree(int L , int R , int o)
    {
        tree[o].L = L , tree[o].R = R,tree[o].Max1 = 0;
        tree[o].Max2 = L;
        if (R > L)
        {
            int mid = (L+R) >> 1;
            build_tree(L,mid,o*2);
            build_tree(mid+1,R,o*2+1);
        }
    }
    
    inline void updata(int QL,int QR,SgTreeDataType v,int o)
    {
        int L = tree[o].L , R = tree[o].R;
        if (QL <= L && R <= QR)
            tree[o].Max1 += v;
        else
        {
            int mid = (L+R)>>1;
            if (QL <= mid) updata(QL,QR,v,o*2);
            if (QR >  mid) updata(QL,QR,v,o*2+1);
            if(tree[o*2].Max1>=tree[o*2+1].Max1)
                tree[o].Max1 = tree[o*2].Max1,tree[o].Max2 = tree[o*2].Max2;
            else
                tree[o].Max1 = tree[o*2+1].Max1,tree[o].Max2 = tree[o*2+1].Max2;
        }
    }
    
    ///////////////////////////////////////////////////
    int MM;
    void Get(int u,int tp)
    {
        //cout<<u<<endl;
        for(int j=0;j<G[u].size();j++)
        {
            if(G[u][j].second==-1)continue;
            //cout<<G[u][j].first<<" "<<G[u][j].second<<endl;
            updata(G[u][j].first,G[u][j].first,G[u][j].second,1);
        }
        //cout<<u<<" "<<tree[1].Max2<<" flag"<<endl;
        ans[u]=tree[1].Max2;
        for(int j=0;j<G[u].size();j++)
        {
            if(G[u][j].second==1)continue;
            //cout<<G[u][j].first<<" "<<G[u][j].second<<endl;
            updata(G[u][j].first,G[u][j].first,G[u][j].second,1);
        }
        if(son[u]==-1) return;
        Get(son[u],tp);
        for(int i=head[u]; ~i; i=Next[i])
        {
            int v=to[i];
            if(v!=son[u]&&v!=fa[u])
                Get(v,v);
        }
    }
    int main()
    {
        while(scanf("%d%d",&n,&MM)!=EOF)
        {
            if(n==0&&MM==0)break;
            Init();
            for(int i=1; i<n; i++)
            {
                int a,b;
                scanf("%d%d",&a,&b);
                addedge(a,b);
            }
            dfs1(1,1,1);
            dfs2(1,1);
            while(MM--)
            {
                int x,y,z;
                scanf("%d%d%d",&x,&y,&z);
                solve(x,y,z);
            }
            build_tree(0,100005,1);
            Get(1,1);
            for(int i=1;i<=n;i++)
                printf("%d
    ",ans[i]);
        }
        return 0;
    }
  • 相关阅读:
    SQL优化,解决系统运行效率瓶颈
    C#中 哪些是值类型 哪些是引用类型
    C#异常类相关总结
    对象 序列化 字节流 传输
    给数组中的每个元素赋值
    对象转化为 xml字符串
    .NET BETWEEN方法
    Datatable To List<Entity>
    ajax原理
    gulp记录
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4999424.html
Copyright © 2011-2022 走看看