zoukankan      html  css  js  c++  java
  • HDU 5597 GTW likes function 打表

    GTW likes function

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5596

    Description

    Now you are given two definitions as follows.

    f(x)=∑xk=0(−1)k22x−2kCk2x−k+1,f0(x)=f(x),fn(x)=f(fn−1(x))(n≥1)

    Note that φ(n) means Euler’s totient function.(φ(n)is an arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n.)

    For each test case, GTW has two positive integers — n and x, and he wants to know the value of the function φ(fn(x)).

    Input

    There is more than one case in the input file. The number of test cases is no more than 100. Process to the end of the file.

    Each line of the input file indicates a test case, containing two integers, n and x, whose meanings are given above. (1≤n,x≤1012)

    Output

    In each line of the output file, there should be exactly one number, indicating the value of the function φ(fn(x)) of the test case respectively.

    Sample Input

    1 1

    2 1

    3 2

    Sample Output

    2

    2

    2

    Hint

    题意

    题解:

    一切反动派都是纸老虎

    打表之后很容易发现,f(x) = x+1

    于是这道题就很蠢了,直接输出phi(n+x+1)就好了

    代码

    #include<iostream>
    #include<stdio.h>
    using namespace std;
    
    
    long long phi(long long n)
    {
        long long tmp=n;
        for(long long i=2;i*i<=n;i++)
            if(n%i==0)
            {
                tmp/=i;tmp*=i-1;
                while(n%i==0)n/=i;
            }
        if(n!=1)tmp/=n,tmp*=n-1;
        return tmp;
    }
    
    int main()
    {
        long long n,x;
        while(scanf("%I64d%I64d",&n,&x)!=EOF)
            printf("%I64d
    ",phi(x+n+1));
        return 0;
    }
  • 相关阅读:
    Django rest_framework之序列化(serializers)
    异常处理
    Django之ModelForm通过ajax用户登录验证
    Django之ModelForm用户登录注册
    Django之Model操作
    Jenkins+Maven+SVN+Nexus 搭建持续集成环境
    nginx rewrite域名跳转访问XML接口
    python自动发布应用脚本
    Django基础
    Web安全概述
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5042003.html
Copyright © 2011-2022 走看看