zoukankan      html  css  js  c++  java
  • Codeforces Round #338 (Div. 2) D. Multipliers 数论

    D. Multipliers

    题目连接:

    http://codeforces.com/contest/615/problem/D

    Description

    Ayrat has number n, represented as it's prime factorization pi of size m, i.e. n = p1·p2·...·pm. Ayrat got secret information that that the product of all divisors of n taken modulo 109 + 7 is the password to the secret data base. Now he wants to calculate this value.

    Input

    The first line of the input contains a single integer m (1 ≤ m ≤ 200 000) — the number of primes in factorization of n.

    The second line contains m primes numbers pi (2 ≤ pi ≤ 200 000).rst line of the input contains the string s — the coating that is present in the shop. Second line contains the string t — the coating Ayrat wants to obtain. Both strings are non-empty, consist of only small English letters and their length doesn't exceed 2100.

    Output

    Print one integer — the product of all divisors of n modulo 109 + 7.

    Sample Input

    2

    2 3

    Sample Output

    36

    Hint

    题意

    给你一个数的质因数,然后让你求出这个数所有因数的乘积

    题解:

    和hdu 5525很像,某场BC的原题

    对于每个质因子,对答案的贡献为p^(d[p] * (d[p]-1) 2 * d[s])

    d[p]表示p的因子数量,d[s]表示s这个数的因子数量

    数量可以由因子数量定理求得,d[s] = (a1+1)(a2+1)...(an+1),a1.a2.a3表示s的质因子的次数。

    但是由于指数可能很大,所以我们就需要使用费马小定理就好了

    但是又有除2的操作,mod-1有不是质数,不存在逆元,所以先对2(mod-1)取模。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    #define maxn 200005
    long long mod = 1e9+7;
    long long mod2 = 2LL*(mod - 1);
    long long quickpow(long long a,long long b,long long c)
    {
        long long ans = 1;
        while(b)
        {
            if(b&1)ans = ans * a % c;
            a = a * a % c;
            b>>=1;
        }
        return ans;
    }
    int cnt[maxn];
    int p[maxn];
    int vis[maxn];
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&p[i]);
            cnt[p[i]]++;
        }
        long long tot = 1;
        for(int i=1;i<=n;i++)
        {
            if(vis[p[i]])continue;
            vis[p[i]]=1;
            tot = tot*(cnt[p[i]]+1)%mod2;//求因子数
        }
        memset(vis,0,sizeof(vis));
        long long ans = 1;
        for(int i=1;i<=n;i++)
        {
            if(vis[p[i]])continue;
            vis[p[i]]=1;
            ans=ans*quickpow(p[i],(tot*cnt[p[i]]/2)%mod2,mod)%mod;//每个数的贡献,费马小定理
        }
        cout<<ans<<endl;
    }
  • 相关阅读:
    Linux ps 查看进程
    Linux free命令
    Linux sar命令
    php 上传文件
    sql 计算周围公里语句
    mysql sum 和 count 函数 合并使用
    php函数 ceil floor round和 intval
    linux sort 命令
    Sicily 2711. 模板与STL 解题报告
    堆排序
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5115610.html
Copyright © 2011-2022 走看看