zoukankan      html  css  js  c++  java
  • poj 1845 Sumdiv 约数和定理

    Sumdiv

    题目连接:

    http://poj.org/problem?id=1845

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    题意

    给你A,B,求A^B的因子和mod 9901

    题解:

    首先我们知道A的因式分解

    A = (p1^k1) * (p2^k2) * (p3^k3) * .... * (pn^kn)

    所以A^B = (p1^(k1*B)) * (p2^(k2*B)) * (p3^(k3*B)) * .... * (pn^(kn*B))

    然后根据约数和定理,约数的和

    Sum = (1+p1+p1^2+...+p1^(k1*B))(1+p2....+p2^(k2*B)).....(1+pn+...+pn^(kn*B))

    中间等比数列要mod,所以就直接递归求就好了。

    代码

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<iostream>
    using namespace std;
    const int maxn = 1e6;
    long long quickpow(long long  m,long long n,long long k)
    {
        long long b = 1;
        while (n > 0)
        {
              if (n & 1)
                 b = (b*m)%k;
              n = n >> 1 ;
              m = (m*m)%k;
        }
        return b;
    }
    int cnt[maxn];
    int num[maxn];
    int tot = 0;
    void factorization(int x)
    {
        for(int i=2;i*i<=x;i++)
        {
            if(x%i==0)
            {
                cnt[tot]=i;
                num[tot]=0;
                while(x%i==0)
                {
                    x/=i;
                    num[tot]++;
                }
                tot++;
            }
        }
        if(x!=1)
        {
            cnt[tot]=x;
            num[tot]=1;
            tot++;
        }
    }
    
    long long Sum_of_geometric_progression(long long p,long long n,long long mod)
    {
        if(n==0)return 1;
        if(n&1)
            return ((1+quickpow(p,n/2+1,mod))%mod*Sum_of_geometric_progression(p,n/2,mod)%mod)%mod;
        else
            return (quickpow(p,n/2,mod)+(1+quickpow(p,n/2+1,mod))%mod*Sum_of_geometric_progression(p,(n-1)/2,mod)%mod)%mod;
    }
    
    int main()
    {
        int A,B;
        while(scanf("%d%d",&A,&B)!=EOF)
        {
            tot = 0;
            factorization(A);
            int ans = 1;
            for(int i=0;i<tot;i++)
                ans = (ans*Sum_of_geometric_progression(cnt[i],B*num[i],9901))%9901;
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    为什么学微信小程序开发
    mac 上配置sublime text3插件
    获取元素的宽度和高度
    移动端页面SEO优化需要注意的10个要点
    gulp详细入门教程
    HTTP协议详解
    深入了解 Flexbox 伸缩盒模型
    移动前端之viewport
    如何设置“用eclipse开发时自动在顶端产生import”?
    认识 java JVM虚拟机选项 Xms Xmx PermSize MaxPermSize 区别
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5129872.html
Copyright © 2011-2022 走看看