zoukankan      html  css  js  c++  java
  • Codeforces Gym 100015G Guessing Game 差分约束

    Guessing Game

    题目连接:

    http://codeforces.com/gym/100015/attachments

    Description

    Jaehyun has two lists of integers, namely a1,...,aN and b1,...,bM.Je!rey wants to know what these
    numbers are, but Jaehyun won’t tell him the numbers directly. So, Je!rey asks Jaehyun a series of questions
    of the form “How big is ai + bj ?” Jaehyun won’t even tell him that, though; instead, he answers either
    “It’s at least c,” or “It’s at most c.” (Right, Jaehyun simply doesn’t want to give his numbers for whatever
    reason.) After getting Jaehyun’s responses, Je!rey tries to guess the numbers, but he cannot figure them out
    no matter how hard he tries. He starts to wonder if Jaehyun has lied while answering some of the questions.
    Write a program to help Je!rey.

    Input

    The input consists of multiple test cases. Each test case begins with a line containing three positive integers
    N, M,and Q, which denote the lengths of the Jaehyun’s lists and the number of questions that Je!rey
    asked. These numbers satisfy 2 ! N + M ! 1,000 and 1 ! Q ! 10,000. Each of the next Q lines is of the
    form ij<=c or ij>=c.Theformerrepresents ai + bj ! c, and the latter represents ai + bj " c. It is
    guaranteed that #1,000 ! c ! 1,000. The input terminates with a line with N = M = Q = 0. For example:

    Output

    For each test case, print a single line that contains “Possible” if there exist integers a1,...,aN and b1,...,bM
    that are consistent with Jaehyun’s answers, or “Impossible” if it can be proven that Jaehyun has definitely
    lied (quotes added for clarity). The correct output for the sample input above would be:

    Sample Input

    2 1 3

    1 1 <= 3

    2 1 <= 5

    1 1 >= 4

    2 2 4

    1 1 <= 3

    2 1 <= 4

    1 2 >= 5

    2 2 >= 7

    0 0 0

    Sample Output

    Impossible

    Possible

    Hint

    题意

    a数组有n个数,b数组有m个数

    然后告诉你一些不等式表示a[i]+b[j]<=C之类的

    问你能否找到一组解

    题解:

    差分约束的裸题

    我们建边之后,跑最短路,看是否有负环,如果存在负环的话,就说明这个不等式显然是不成立的

    就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int inf=0x3f3f3f3f;
    struct node
    {
        int x,y;
    };
    vector<node> E[2005];
    int n,m,q;
    int inq[2005],dis[2005];
    int flag=0;
    void solve(int x)
    {
        if(flag)
            return;
        inq[x]=1;
        for(int i=0;i<E[x].size();i++)
        {
            node v = E[x][i];
            if(dis[v.x]>dis[x]+v.y)
            {
                dis[v.x]=dis[x]+v.y;
                if(inq[v.x])
                {
                    flag=1;
                    return;
                }
                if(!inq[v.x])
                {
                    dis[v.x]=dis[x]+v.y;
                    solve(v.x);
                }
            }
        }
        inq[x]=0;
    }
    int main()
    {
        //freopen("1.in","r",stdin);
        while(scanf("%d%d%d",&n,&m,&q)!=EOF)
        {
            if(n==0&&m==0&&q==0)
                break;
            flag = 0;
            memset(inq,0,sizeof(inq));
            memset(dis,0,sizeof(dis));
            for(int i=0;i<=n+m;i++)
                E[i].clear();
            for(int i=0;i<=n;i++)
                dis[i]=inf;
            for(int i=0;i<q;i++)
            {
                int x,y,z;
                string s;
                scanf("%d%d",&x,&y);cin>>s;
                scanf("%d",&z);
                if(s==">=")
                    E[x].push_back((node){n+y,-z});
                if(s=="<=")
                    E[y+n].push_back((node){x,z});
            }
            for(int i=1;i<=n+m;i++)
                dis[i]=0,solve(i);
            if(flag)printf("Impossible
    ");
            else printf("Possible
    ");
        }
    }
  • 相关阅读:
    【LeetCode & 剑指offer刷题】数组题18:Plus One
    SQL Server 2005 的动态管理视图DMV和函数DMF
    数据库SQL优化大总结之 百万级数据库优化方案
    误删SQL Server日志文件后怎样附加数据库
    教你建立SQL数据库的表分区
    Sql Server 阻塞的常见原因和解决办法
    SQL索引优化方法
    详解如何定义SQL Server外关键字约束
    写出高性能SQL语句的十三条法则
    SQL SERVER内部函数大全
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5136018.html
Copyright © 2011-2022 走看看