zoukankan      html  css  js  c++  java
  • 8VC Venture Cup 2016

    E. Simple Skewness

    题目连接:

    http://www.codeforces.com/contest/626/problem/E

    Description

    Define the simple skewness of a collection of numbers to be the collection's mean minus its median. You are given a list of n (not necessarily distinct) integers. Find the non-empty subset (with repetition) with the maximum simple skewness.

    The mean of a collection is the average of its elements. The median of a collection is its middle element when all of its elements are sorted, or the average of its two middle elements if it has even size.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of elements in the list.

    The second line contains n integers xi (0 ≤ xi ≤ 1 000 000) — the ith element of the list.

    Output

    In the first line, print a single integer k — the size of the subset.

    In the second line, print k integers — the elements of the subset in any order.

    If there are multiple optimal subsets, print any.

    Sample Input

    4
    1 2 3 12

    Sample Output

    3
    1 2 12

    Hint

    题意

    给你n个数,然后让你选出某些数出来,使得你选出来的数的平均值减去中位数最大

    题解:

    暴力枚举中位数,然后二分长度

    显然我们知道中位数是什么,长度是什么之后,我们直接取最大的mid个数就好了

    从n开始取mid个,从中位数取mid个,这样的平均值最大嘛。

    我们可以大胆猜想(不用证明),长度的那个曲线是一个单峰的,所以我们三分或者二分去做,都兹瓷。

    然后这道题就完了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2e5+7;
    long long w[maxn],s[maxn];
    int n;
    long long get(int x,int i)
    {
        return s[x]-s[x-i-1]+s[n]-s[n-i];
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%lld",&w[i]);
        sort(w+1,w+1+n);
        for(int i=1;i<=n;i++)
            s[i]+=w[i]+s[i-1];
        int ans1=1,ans2=0;
        double s1=0;
        for(int i=2;i<=n;i++)
        {
            int l=2,r=min(n-i,i-1);
            int tmp=1;
            while(l<=r)
            {
                int mid=(l+r)/2;
                if(get(i,mid-1)*(2*mid+1)<get(i,mid)*(2*mid-1))
                {
                    tmp=mid;
                    l=mid+1;
                }
                else
                    r=mid-1;
            }
            double tmp2 = 1.0*get(i,tmp)/(1.0*2*tmp+1) - 1.0*w[i];
            if(tmp2>s1)
            {
                s1=tmp2;
                ans2=tmp,ans1=i;
            }
        }
        printf("%d
    ",ans2*2+1);
        for(int i=ans1;i>ans1-ans2-1;i--)printf("%d ",w[i]);
        for(int i=n;i>n-ans2;i--)printf("%d ",w[i]);
        printf("
    ");
    }
  • 相关阅读:
    python 中的深拷贝和浅拷贝
    时间复杂度
    为什么l1和l2可以防止过拟合
    逻辑回归实现多分类
    《深入浅出数据分析》读书笔记
    牛客网的输入和输出
    万物皆可embedding
    NLP中的mask的作用
    不同语言对单例模式的不同实现
    ElasticSearch 索引 VS MySQL 索引
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5188862.html
Copyright © 2011-2022 走看看