zoukankan      html  css  js  c++  java
  • 8VC Venture Cup 2016

    E. Simple Skewness

    题目连接:

    http://www.codeforces.com/contest/626/problem/E

    Description

    Define the simple skewness of a collection of numbers to be the collection's mean minus its median. You are given a list of n (not necessarily distinct) integers. Find the non-empty subset (with repetition) with the maximum simple skewness.

    The mean of a collection is the average of its elements. The median of a collection is its middle element when all of its elements are sorted, or the average of its two middle elements if it has even size.

    Input

    The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of elements in the list.

    The second line contains n integers xi (0 ≤ xi ≤ 1 000 000) — the ith element of the list.

    Output

    In the first line, print a single integer k — the size of the subset.

    In the second line, print k integers — the elements of the subset in any order.

    If there are multiple optimal subsets, print any.

    Sample Input

    4
    1 2 3 12

    Sample Output

    3
    1 2 12

    Hint

    题意

    给你n个数,然后让你选出某些数出来,使得你选出来的数的平均值减去中位数最大

    题解:

    暴力枚举中位数,然后二分长度

    显然我们知道中位数是什么,长度是什么之后,我们直接取最大的mid个数就好了

    从n开始取mid个,从中位数取mid个,这样的平均值最大嘛。

    我们可以大胆猜想(不用证明),长度的那个曲线是一个单峰的,所以我们三分或者二分去做,都兹瓷。

    然后这道题就完了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2e5+7;
    long long w[maxn],s[maxn];
    int n;
    long long get(int x,int i)
    {
        return s[x]-s[x-i-1]+s[n]-s[n-i];
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%lld",&w[i]);
        sort(w+1,w+1+n);
        for(int i=1;i<=n;i++)
            s[i]+=w[i]+s[i-1];
        int ans1=1,ans2=0;
        double s1=0;
        for(int i=2;i<=n;i++)
        {
            int l=2,r=min(n-i,i-1);
            int tmp=1;
            while(l<=r)
            {
                int mid=(l+r)/2;
                if(get(i,mid-1)*(2*mid+1)<get(i,mid)*(2*mid-1))
                {
                    tmp=mid;
                    l=mid+1;
                }
                else
                    r=mid-1;
            }
            double tmp2 = 1.0*get(i,tmp)/(1.0*2*tmp+1) - 1.0*w[i];
            if(tmp2>s1)
            {
                s1=tmp2;
                ans2=tmp,ans1=i;
            }
        }
        printf("%d
    ",ans2*2+1);
        for(int i=ans1;i>ans1-ans2-1;i--)printf("%d ",w[i]);
        for(int i=n;i>n-ans2;i--)printf("%d ",w[i]);
        printf("
    ");
    }
  • 相关阅读:
    第一节:从程序集的角度分析System.Web.Caching.Cache ,并完成基本封装。
    大话缓存
    第二节:SQLServer的安装及使用
    OpenCV特征点检测——ORB特征
    Opencv学习笔记--Harris角点检测
    关于Yuri Boykov and Vladimir Kolmogorov 于2004年提出的max flow / min cut的算法的详解
    [论文笔记] CUDA Cuts: Fast Graph Cuts on the GPU
    Graph Cut and Its Application in Computer Vision
    OpenCV中openMP的使用
    四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT。
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5188862.html
Copyright © 2011-2022 走看看