zoukankan      html  css  js  c++  java
  • HDU 5628 Clarke and math dp+数学

    Clarke and math

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5628

    Description

    Clarke is a patient with multiple personality disorder. One day, he turned into a mathematician, did a research on interesting things.
    Suddenly he found a interesting formula. Given f(i),1≤i≤n, calculate
    g(i)=∑i1∣i∑i2∣i1∑i3∣i2⋯∑ik∣ik−1f(ik) mod 1000000007(1≤i≤n)

    Input

    The first line contains an integer T(1≤T≤5), the number of test cases.
    For each test case, the first line contains two integers n,k(1≤n,k≤100000).
    The second line contains n integers, the ith integer denotes f(i),0≤f(i)<109+7.

    Output

    For each test case, print a line contained n integers, the ith integer represents g(i).

    Sample Input

    2
    6 2
    2 3 3 3 3 3
    23 3
    2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

    Sample Output

    2 7 7 15 7 23
    2 9 9 24 9 39 9 50 24 39 9 102 9 39 39 90 9 102 9 102 39 39 9

    Hint

    题意

    题解:

    dp
    dp[i][j]表示第i位置,选择了j个不同的因子之后,能够获得的权值是多少
    ans[i]=sigma C(k,j)*dp[i][j]
    为什么呢?
    我们考虑传递了k次的sigma,实际上就是在枚举因子,在这个数据范围内,最多枚举20个不同的因子,而且因子显然是不断递减的(当然,这句话没什么用
    然后脑补脑补,这个就是对的了……

    官方题解确实看不懂……
    弱智选手并不会xx卷积……

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5+7;
    const int mod = 1e9+7;
    long long fac[maxn];
    long long qpow(long long a,long long b)
    {
        long long ans=1;a%=mod;
        for(long long i=b;i;i>>=1,a=a*a%mod)
            if(i&1)ans=ans*a%mod;
        return ans;
    }
    long long C(long long n,long long m)
    {
        if(m>n||m<0)return 0;
        long long s1=fac[n],s2=fac[n-m]*fac[m]%mod;
        return s1*qpow(s2,mod-2)%mod;
    }
    int a[maxn];
    int dp[maxn][22];
    int K=20;
    int main()
    {
        fac[0]=1;
        for(int i=1;i<maxn;i++)
            fac[i]=fac[i-1]*i%mod;
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int n,m;
            memset(dp,0,sizeof(dp));
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
                scanf("%d",&a[i]);
            for(int i=1;i<=n;i++)
                dp[i][0]=a[i];
            for(int i=1;i<=n;i++)
                for(int j=i+i;j<=n;j+=i)
                    for(int k=0;k<K;k++)
                        dp[j][k+1]=(dp[j][k+1]+dp[i][k])%mod;
            for(int i=1;i<=n;i++)
            {
                int ans = 0;
                for(int j=0;j<=K;j++)
                    ans=(ans+1ll*C(m,j)*dp[i][j])%mod;
                if(i==n)printf("%d",ans);else printf("%d ",ans);
            }
            printf("
    ");
        }
    }
  • 相关阅读:
    Rsync+sersync 数据同步指南
    rsync 和 inotify 结合
    linux查看 inotify 提供的工具
    linux安装 inotify
    Rsync+inotify 实时数据同步 inotify master 端的配置
    linux手动测试 rsync 的同步情况
    linux安装 rsync 客户端和相关权限认证
    linux为 rsync 添加开机启动
    linux查看 rsync 服务状态
    了解SQL Server锁争用:NOLOCK 和 ROWLOCK 的秘密
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5194989.html
Copyright © 2011-2022 走看看