zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 8 D. Magic Numbers 数位DP

    D. Magic Numbers

    题目连接:

    http://www.codeforces.com/contest/628/problem/D

    Description

    Consider the decimal presentation of an integer. Let's call a number d-magic if digit d appears in decimal presentation of the number on even positions and nowhere else.

    For example, the numbers 1727374, 17, 1 are 7-magic but 77, 7, 123, 34, 71 are not 7-magic. On the other hand the number 7 is 0-magic, 123 is 2-magic, 34 is 4-magic and 71 is 1-magic.

    Find the number of d-magic numbers in the segment [a, b] that are multiple of m. Because the answer can be very huge you should only find its value modulo 109 + 7 (so you should find the remainder after dividing by 109 + 7).

    Input

    The first line contains two integers m, d (1 ≤ m ≤ 2000, 0 ≤ d ≤ 9) — the parameters from the problem statement.

    The second line contains positive integer a in decimal presentation (without leading zeroes).

    The third line contains positive integer b in decimal presentation (without leading zeroes).

    It is guaranteed that a ≤ b, the number of digits in a and b are the same and don't exceed 2000.

    Output

    Print the only integer a — the remainder after dividing by 109 + 7 of the number of d-magic numbers in segment [a, b] that are multiple of m.

    Sample Input

    2 6
    10
    99

    Sample Output

    8

    Hint

    题意

    现在定义d-magic数字,就是一个没有前导0的数,d恰好仅出现在这个数的偶数位置。

    然后现在给你m,d,a,b。问你在[a,b]内,是m的倍数,且是d-magic的数字有多少个

    答案需要 mod 1e9+7

    题解:

    比较显然的数位dp

    dp[len][mod][flag]表示现在长度是多少,现在的余数是多少,现在是否达到上界的方案数是多少

    然后直接转移就好了

    这个让L--很麻烦,所以我直接就判断L这个位置合不合法就好了,如果合法,我就直接让答案++就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2e3+5;
    const int mod = 1e9+7;
    int dp[maxn][maxn][2];
    int vis[maxn][maxn][2];
    char s[maxn];
    int m,d,len;
    int check()
    {
        int mm = 0;
        for(int i=1;i<=len;i++)
        {
            mm = (mm+s[i]-'0')%m;
            if(i%2==1&&(s[i]-'0')==d)
                return 0;
            if(i%2==0&&(s[i]-'0')!=d)
                return 0;
        }
        if(mm!=0)return 0;
        return 1;
    }
    void update(int &a,int b)
    {
        a = (a+b)%mod;
    }
    int solve(int Len,int Mod,int Flag)
    {
        if(Len==len+1)return Mod==0?1:0;
        if(vis[Len][Mod][Flag])return dp[Len][Mod][Flag];
        vis[Len][Mod][Flag]=1;
        int st=0,ed=0;
        if(Flag!=0)ed=9;else ed=s[Len]-'0';
        if(Len==1)st=1;else st=0;
        if(Len%2==0)
        {
            if(ed>=d)
            {
                int Flag2 = Flag|(d<(s[Len]-'0'));
                update(dp[Len][Mod][Flag],solve(Len+1,(Mod*10+d)%m,Flag2));
            }
        }
        else
        {
            for(int i=st;i<=ed;i++)
            {
                if(i==d)continue;
                int Flag2 = Flag|(i<(s[Len]-'0'));
                update(dp[Len][Mod][Flag],solve(Len+1,(Mod*10+i)%m,Flag2));
            }
        }
        return dp[Len][Mod][Flag];
    }
    
    int main()
    {
        scanf("%d%d",&m,&d);
        scanf("%s",s+1);
        len = strlen(s+1);
        memset(vis,0,sizeof(vis));
        memset(dp,0,sizeof(dp));
        int ans1 = solve(1,0,0),ans2=0;
        if(check())ans2++;
        scanf("%s",s+1);
        len = strlen(s+1);
        memset(vis,0,sizeof(vis));
        memset(dp,0,sizeof(dp));
        ans2 += solve(1,0,0);
        int ans=(ans2-ans1)%mod;
        if(ans<0)ans+=mod;
        cout<<ans<<endl;
    }
  • 相关阅读:
    poj3669 广搜
    检索所有课程都选修的的学生的学号与姓名
    UVA10160 Servicing Stations
    uva11205 The broken pedometer 子集生成
    poj1101 the game 广搜
    poj3009 Curling 2.0 深搜
    poj 1564 Sum It Up 搜索
    HDU 2268 How To Use The Car (数学题)
    codeforces 467C George and Job(简单dp,看了题解抄一遍)
    HDU 2267 How Many People Can Survive(广搜,简单)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5204853.html
Copyright © 2011-2022 走看看