zoukankan      html  css  js  c++  java
  • HDU 4612 Warm up tarjan 树的直径

    Warm up

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=4612

    Description

    N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.
      If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
    People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
      Note that there could be more than one channel between two planets.
      

    Input

      The input contains multiple cases.
      Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
      (2<=N<=200000, 1<=M<=1000000)
      Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
      A line with two integers '0' terminates the input.
      

    Output

    For each case, output the minimal number of bridges after building a new channel in a line.

    Sample Input

    4 4
    1 2
    1 3
    1 4
    2 3
    0 0

    Sample Output

    0

    Hint

    题意

    让你加一条边,使得这个图的桥数量最小

    输出桥的数量

    题解:

    先缩点,然后求一个直径,然后输出树边数减去直径就好了

    这样显然最小

    代码

    #include <bits/stdc++.h>
    
    using namespace std;
    const int maxn = 200000 + 500;
    struct edge{
        int v , nxt;
    }e[2005000];
    int head[maxn] , tot , n , m , dfn[maxn] , low[maxn] , dfs_clock , bridge , dis[maxn] , vis[maxn] , Ftp , belong[maxn] ;
    stack < int > sp;
    vector < int > G[maxn];
    void link(int u , int v){ e[tot].v=v,e[tot].nxt=head[u],head[u]=tot++;}
    
    void dfs(int x , int pre){
    	dfn[x] = low[x] = ++ dfs_clock; sp.push( x );
    	for(int i = head[x] ; ~i ; i = e[i].nxt ){
    		if( (i ^ 1) == pre ) continue;
    		int v = e[i].v;
    		if(!dfn[v]){
    			dfs( v , i );
    			low[x] = min( low[x] , low[ v ] );
    			if(low[v] > dfn[x]) bridge ++ ;
    		}else low[x]=min(low[x],dfn[v]);
    	}
    	if( low[x] == dfn[x] ){
    		++ Ftp;
    		while(1){
    			int u = sp.top() ; sp.pop();
    			belong[u] = Ftp;
    			if( u == x ) break;
    		}
    	}
    }
    
    queue < int > Q;
    
    int solve(){
    	vis[1] = 1 ;
    	Q.push( 1 );
    	while(!Q.empty()){
    		int s = Q.front() ; Q.pop();
    		for(auto it : G[s]){
    			if( vis[it] == 0 ){
    				vis[it] = 1 ;
    				dis[it] = dis[s] + 1;
    				Q.push( it );
    			}
    		}
    	}
    	int s = -1 , index = 0;
    	for( int it = 1 ; it <= Ftp ; ++ it ){
    		if(dis[it] > s){
    			s = dis[it];
    			index = it;
    		}
    	}
    	for(int i = 1 ; i <= Ftp ; ++ i) dis[i] = vis[i] = 0;
    	Q.push( index );
    	vis[index] = 1;
    	while(!Q.empty()){
    		int s = Q.front() ; Q.pop();
    		for(auto it : G[s]){
    			if( vis[it] == 0 ){
    				vis[it] = 1 ;
    				dis[it] = dis[s] + 1;
    				Q.push( it );
    			}
    		}
    	}
    	s = 0;
    	for( int it = 1 ; it <= Ftp ; ++ it ){
    		if(dis[it] > s){
    			s = dis[it];
    		}
    	}
    	return s;
    }
    
    int main(int argc,char *argv[]){
    	while(scanf("%d%d",&n,&m)){
    		if( n == 0 && m == 0 ) break;
    		for(int i = 1 ; i <= n ; ++ i) head[i] = -1 , dfn[i] = low[i] = vis[i] = dis[i] = 0 , G[i].clear();
    		tot = dfs_clock = bridge = Ftp = 0 ;
    		for(int i = 1 ; i <= m ; ++ i){
    			int u , v ;
    			scanf("%d%d",&u,&v);
    			link( u , v );
    			link( v , u );
    		}
    		for(int i = 1 ; i <= n ; ++ i) if(!dfn[i]) dfs( i , 1 << 30 );
    		for(int i = 1 ; i <= n ; ++ i)
    			for(int j = head[i] ; ~j ; j = e[j].nxt){
    				int v = e[j].v;
    				if(belong[i] == belong[v]) continue;
    				G[belong[i]].push_back( belong[v] );
    				G[belong[v]].push_back( belong[i] );
    			}
    		int maxv = solve();
    		printf("%d
    " , bridge - maxv );
    	}
    	return 0;
    }
  • 相关阅读:
    面向对象三大特征之多态——Java笔记(七)
    面向对象三大特征之继承(extends)——Java笔记(六)
    this、访问修饰符——Java笔记(五)
    面向对象三大特征之封装与static——(Java学习笔记四)
    初识Java——(Java学习笔记一)
    HTTP/3 简介
    iis 500.19错误解决过程记录
    排序陷阱 List.Sort Linq.OrderBy
    锁的封装 读写锁、lock
    时间“Thu Aug 14 2014 14:28:06 GMT+0800”的转换
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5373581.html
Copyright © 2011-2022 走看看