zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #10 D. LCIS 动态规划

    D. LCIS

    题目连接:

    http://www.codeforces.com/contest/10/problem/D

    Description

    This problem differs from one which was on the online contest.

    The sequence a1, a2, ..., an is called increasing, if ai < ai + 1 for i < n.

    The sequence s1, s2, ..., sk is called the subsequence of the sequence a1, a2, ..., an, if there exist such a set of indexes 1 ≤ i1 < i2 < ... < ik ≤ n that aij = sj. In other words, the sequence s can be derived from the sequence a by crossing out some elements.

    You are given two sequences of integer numbers. You are to find their longest common increasing subsequence, i.e. an increasing sequence of maximum length that is the subsequence of both sequences.

    Input

    The first line contains an integer n (1 ≤ n ≤ 500) — the length of the first sequence. The second line contains n space-separated integers from the range [0, 109] — elements of the first sequence. The third line contains an integer m (1 ≤ m ≤ 500) — the length of the second sequence. The fourth line contains m space-separated integers from the range [0, 109] — elements of the second sequence.

    Output

    In the first line output k — the length of the longest common increasing subsequence. In the second line output the subsequence itself. Separate the elements with a space. If there are several solutions, output any.

    Sample Input

    7
    2 3 1 6 5 4 6
    4
    1 3 5 6

    Sample Output

    3
    3 5 6

    Hint

    题意

    给你两个串,求公共最长上升子序列

    题解:

    考虑暴力枚举第一个串,然后for循环枚举第二个串

    dp[i]表示第二个串位置为i的时候与第一个串的的最长公共上升子序列是多少

    然后直接暴力更新dp就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 505;
    int dp[maxn],a[maxn],b[maxn],step[maxn],n,m;
    void print(int x)
    {
        if(x==0)return;
        print(step[x]);
        printf("%d ",b[x]);
    }
    int main()
    {
        scanf("%d",&n);for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        scanf("%d",&m);for(int i=1;i<=m;i++)scanf("%d",&b[i]);
    
        for(int i=1;i<=n;i++)
        {
            int pos = 0;
            for(int j=1;j<=m;j++)
            {
                if(a[i]==b[j])
                {
                    dp[j]=dp[pos]+1;
                    step[j]=pos;
                }
                else if(a[i]>b[j]&&dp[pos]<dp[j])
                    pos=j;
            }
        }
        int ans = 0,ans1 = 0;
        for(int i=1;i<=m;i++)
            if(dp[i]>ans1)
                ans1=dp[i],ans=i;
        cout<<ans1<<endl;
        print(ans);
    }
  • 相关阅读:
    SQL学习笔记9——SQL中检索数据之分页查询
    SQL学习笔记8——SQL中检索数据之子查询
    SQL学习笔记7——SQL中检索数据之连接查询
    Two Pointer
    LeetCode 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit
    leetcode 30 days challenge Check If a String Is a Valid Sequence from Root to Leaves Path in a Binary Tree
    LeetCode First Unique Number
    letcode1143 Longest Common Subsequence
    Leetcode 560 Subarry Sum Equals K
    leetcode Leftmost Column with at Least a One
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5439183.html
Copyright © 2011-2022 走看看