zoukankan      html  css  js  c++  java
  • HDU 4681 String dp

    String

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=4681

    Description

    Given 3 strings A, B, C, find the longest string D which satisfy the following rules:
    a) D is the subsequence of A
    b) D is the subsequence of B
    c) C is the substring of D
    Substring here means a consecutive subsequnce.
    You need to output the length of D.

    Input

    The first line of the input contains an integer T(T = 20) which means the number of test cases.
    For each test case, the first line only contains string A, the second line only contains string B, and the third only contains string C.
    The length of each string will not exceed 1000, and string C should always be the subsequence of string A and string B.
    All the letters in each string are in lowercase.

    Output

    For each test case, output Case #a: b. Here a means the number of case, and b means the length of D.

    Sample Input

    2
    aaaaa
    aaaa
    aa
    abcdef
    acebdf
    cf

    Sample Output

    Case #1: 4
    Case #2: 3

    Hint

    题意

    给你a,b,c串,你需要找到一个最长的d串

    这个d串是ab串的子序列,然后c串是d串的子串

    问你这个d串的长度是多少

    题解:

    数据范围1000,我们显然可以暴力枚举在a串的起始位置和在b串的起始位置

    答案就是ansL + lenc + ansR

    ansL就是ab串之前的最长公共子序列,ansR就是在匹配之后后面的最长公共子序列

    lenc这个就是贪心匹配的最短位置在哪儿

    这些东西都可以n^2的复杂度直接预处理

    然后暴力去莽一波就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1050;
    int dp1[maxn][maxn],dp2[maxn][maxn],l1[maxn],l2[maxn],len1,len2,len3;
    char s1[maxn],s2[maxn],s3[maxn];
    
    inline void update( int & x , int v ) { x = max( x , v ) ; }
    
    void pre()
    {
        for(int i=1;i<=len1;i++)
        {
            int l=1;
            for(int j=i;j<=len1;j++)
            {
                if(s1[j]==s3[l])l++;
                if(l>len3)
                {
                    l1[i]=j;
                    break;
                }
            }
        }
        for(int i=1;i<=len2;i++)
        {
            int l=1;
            for(int j=i;j<=len2;j++)
            {
                if(s2[j]==s3[l])l++;
                if(l>len3)
                {
                    l2[i]=j;
                    break;
                }
            }
        }
        for(int i=0 ;i< len1;i++)
        {
            for(int j=0 ;j< len2;j++)
            {
                if(s1[i + 1] == s2[j + 1] ) update( dp1[i+1][j+ 1] , dp1[i][j] + 1 );
                update(dp1[i + 1][j] , dp1[i][j] );
                update(dp1[i][j + 1] , dp1[i][j] );
            }
        }
        reverse(s1+1,s1+1+len1);
        reverse(s2+1,s2+1+len2);
    
        for(int i=0 ;i< len1;i++)
        {
            for(int j=0 ;j< len2;j++)
            {
                if(s1[i + 1] == s2[j + 1] ) update( dp2[i+1][j+ 1] , dp2[i][j] + 1 );
                update(dp2[i + 1][j] , dp2[i][j] );
                update(dp2[i][j + 1] , dp2[i][j] );
            }
        }
    }
    void solve(int cas)
    {
        int ans = 0;
        for(int i=1;i<=len1;i++)
        {
            for(int j=1;j<=len2;j++)
            {
                if(l1[i]==-1||l2[j]==-1)continue;
                ans = max(dp1[i-1][j-1]+dp2[len1-l1[i]][len2-l2[j]]+len3,ans);
            }
        }
        printf("Case #%d: %d
    ",cas,ans);
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        for(int i=1;i<=t;i++)
        {
            memset(dp1,0,sizeof(dp1));
            memset(dp2,0,sizeof(dp2));
            memset(l1,-1,sizeof(l1));
            memset(l2,-1,sizeof(l2));
            scanf("%s",s1+1);
            scanf("%s",s2+1);
            scanf("%s",s3+1);
            len1=strlen(s1+1),len2=strlen(s2+1),len3=strlen(s3+1);
            pre();
            solve(i);
        }
    }
  • 相关阅读:
    dsu on tree题表
    [BZOJ4129]Haruna’s Breakfast(树上带修改莫队)
    [BZOJ3757]苹果树(树上莫队)
    [BZOJ3585]mex(莫队+分块)
    Prufer codes与Generalized Cayley's Formula
    [luogu4459][BJOI2018]双人猜数游戏(DP)
    [BZOJ5292][BJOI2018]治疗之雨(概率DP+高斯消元)
    [BZOJ5291][BJOI2018]链上二次求和(线段树)
    [luogu4389]付公主的背包(多项式exp)
    [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5493706.html
Copyright © 2011-2022 走看看