zoukankan      html  css  js  c++  java
  • Codeforces Round #248 (Div. 1) B. Nanami's Digital Board 暴力 前缀和

    B. Nanami's Digital Board

    题目连接:

    http://www.codeforces.com/contest/434/problem/B

    Description

    Nanami is an expert at playing games. This day, Nanami's good friend Hajime invited her to watch a game of baseball. Unwilling as she was, she followed him to the stadium. But Nanami had no interest in the game, so she looked around to see if there was something that might interest her. That's when she saw the digital board at one end of the stadium.

    The digital board is n pixels in height and m pixels in width, every pixel is either light or dark. The pixels are described by its coordinate. The j-th pixel of the i-th line is pixel (i, j). The board displays messages by switching a combination of pixels to light, and the rest to dark. Nanami notices that the state of the pixels on the board changes from time to time. At certain times, certain pixels on the board may switch from light to dark, or from dark to light.

    Nanami wonders, what is the area of the biggest light block such that a specific pixel is on its side. A light block is a sub-rectangle of the board, in which all pixels are light. Pixel (i, j) belongs to a side of sub-rectangle with (x1, y1) and (x2, y2) as its upper-left and lower-right vertex if and only if it satisfies the logical condition:

    ((i = x1 or i = x2) and (y1 ≤ j ≤ y2)) or ((j = y1 or j = y2) and (x1 ≤ i ≤ x2)).
    Nanami has all the history of changing pixels, also she has some questions of the described type, can you answer them?

    Input

    The first line contains three space-separated integers n, m and q (1 ≤ n, m, q ≤ 1000) — the height and width of the digital board, and the number of operations.

    Then follow n lines, each line containing m space-separated integers. The j-th integer of the i-th line is ai, j — the initial state of pixel (i, j).

    If ai, j = 0, pixel (i, j) is initially dark.
    If ai, j = 1, pixel (i, j) is initially light.
    Then follow q lines, each line containing three space-separated integers op, x, and y (1 ≤ op ≤ 2; 1 ≤ x ≤ n; 1 ≤ y ≤ m), describing an operation.

    If op = 1, the pixel at (x, y) changes its state (from light to dark or from dark to light).
    If op = 2, Nanami queries the biggest light block with pixel (x, y) on its side.

    Output

    For each query, print a single line containing one integer — the answer to Nanami's query.

    Sample Input

    3 4 5
    0 1 1 0
    1 0 0 1
    0 1 1 0
    2 2 2
    2 1 2
    1 2 2
    1 2 3
    2 2 2

    Sample Output

    0
    2
    6

    Hint

    题意

    给你一个01矩阵,然后有两个操作,1是将x y取反,2是问以x,y为边界的最大全1矩形的面积是多少

    题解:

    其实就是瞎暴力……

    一看数据范围,只要能做到修改操作是o(n)和查询操作是o(n)的就好了

    这个直接用单调栈那种思想,直接暴力去莽一波就好了

    对于每一个格子维护四个值,l[x][y],r[x][y],u[x][y],d[x][y]表示这个格子最多往四个方向延展多少

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1005;
    int a[maxn][maxn],n,m,q,up[maxn][maxn],down[maxn][maxn],l[maxn][maxn],r[maxn][maxn];
    int x,y,op;
    void update()
    {
        a[x][y]=1-a[x][y];
        for(int j=1;j<=m;j++)
            if(a[x][j])
                l[x][j]=l[x][j-1]+1;
            else
                l[x][j]=0;
        for(int j=m;j>=1;j--)
            if(a[x][j])
                r[x][j]=r[x][j+1]+1;
            else
                r[x][j]=0;
        for(int i=1;i<=n;i++)
            if(a[i][y])
                up[i][y]=up[i-1][y]+1;
            else
                up[i][y]=0;
        for(int i=n;i>=1;i--)
            if(a[i][y])
                down[i][y]=down[i+1][y]+1;
            else
                down[i][y]=0;
    }
    void query()
    {
        if(a[x][y]==0)
        {
            printf("0
    ");
            return;
        }
        int ans = 0;
        int U=1e9,D=1e9,L=1e9,R=1e9;
        for(int i=y;i>=1;i--)
        {
            U=min(U,up[x][i]);
            D=min(D,down[x][i]);
            ans=max(ans,(U+D-1)*(y-i+1));
        }
        U=1e9,D=1e9,L=1e9,R=1e9;
        for(int i=y;i<=m;i++)
        {
            U=min(U,up[x][i]);
            D=min(D,down[x][i]);
            ans=max(ans,(U+D-1)*(i-y+1));
        }
        U=1e9,D=1e9,L=1e9,R=1e9;
        for(int i=x;i>=1;i--)
        {
            L=min(L,l[i][y]);
            R=min(R,r[i][y]);
            ans=max(ans,(L+R-1)*(x-i+1));
        }
        U=1e9,D=1e9,L=1e9,R=1e9;
        for(int i=x;i<=n;i++)
        {
            L=min(L,l[i][y]);
            R=min(R,r[i][y]);
            ans=max(ans,(L+R-1)*(i-x+1));
        }
        printf("%d
    ",ans);
    }
    int main()
    {
        scanf("%d%d%d",&n,&m,&q);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                scanf("%d",&a[i][j]);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
                if(a[i][j])
                    l[i][j]=l[i][j-1]+1;
            for(int j=m;j>=1;j--)
                if(a[i][j])
                    r[i][j]=r[i][j+1]+1;
        }
        for(int j=1;j<=m;j++)
        {
            for(int i=1;i<=n;i++)
                if(a[i][j])
                    up[i][j]=up[i-1][j]+1;
            for(int i=n;i>=1;i--)
                if(a[i][j])
                    down[i][j]=down[i+1][j]+1;
        }
        for(int i=1;i<=q;i++)
        {
            scanf("%d%d%d",&op,&x,&y);
            if(op==1)update();
            else query();
        }
    }
  • 相关阅读:
    JavaScript indexOf() 方法 和 lastIndexOf() 方法
    JS处理四舍五入函数 toFixed(n)(可取小数点后n位)
    animate支持的css属性
    jquery 停止动画 stop的几种用法
    js动态创建style节点(js文件中添加css)
    在CSS中定义a:link、a:visited、a:hover、a:active顺序
    网站设计如何适合用户的操作习惯?
    mongoDB入门必读
    堆栈简析
    单例模式
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5557604.html
Copyright © 2011-2022 走看看