zoukankan      html  css  js  c++  java
  • URAL 1963 Kite 计算几何

    Kite

    题目连接:

    http://acm.hust.edu.cn/vjudge/contest/123332#problem/C

    Description

    Vova bought a kite construction kit in a market in Guangzhou. The next day the weather was good and he decided to make the kite and fly it. Manufacturing instructions, of course, were only in Chinese, so Vova decided that he can do without it. After a little tinkering, he constructed a kite in the form of a flat quadrangle and only needed to stick a tail to it.
    And then Vova had to think about that: to what point of the quadrangle's border should he stick the kite tail? Intuition told him that in order to make the kite fly steadily, its tail should lie on some axis of symmetry of the quadrangle. On the left you can see two figures of stable kites, and on the right you can see two figures of unstable kites.
    Problem illustration
    How many points on the quadrangle border are there such that if we stick a tail to them, we get a stable kite?

    Input

    The four lines contain the coordinates of the quadrangle's vertices in a circular order. All coordinates are integers, their absolute values don't exceed 1 000. No three consecutive quadrangle vertices lie on the same line. The opposite sides of the quadrangle do not intersect.

    Output

    Print the number of points on the quadrangle border where you can attach the kite.

    Sample Input

    0 0
    1 2
    2 2
    2 1

    Sample Output

    2

    Hint

    题意

    给你个四边形,问你有多少个点在这个四边形的对称轴上

    题解:

    在对称轴上的点只有四边形的端点,以及端点之间的中点。

    把这些点压进去,然后暴力去判断就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const double INF  = 1E200;
    const double EP  = 1E-6 ;
    const int  MAXV = 300 ;
    const double PI  = 3.14159265;
    int vis[100];
    /* 基本几何结构 */
    struct POINT
    {
     double x;
     double y;
     POINT(double a=0, double b=0) { x=a; y=b;} //constructor
    };
    struct LINESEG
    {
     POINT s;
     POINT e;
     LINESEG(POINT a, POINT b) { s=a; e=b;}
     LINESEG() { }
    };
    struct LINE           // 直线的解析方程 a*x+b*y+c=0  为统一表示,约定 a >= 0
    {
       double a;
       double b;
       double c;
       LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
    };
    double dist(POINT p1,POINT p2)                // 返回两点之间欧氏距离
    {
     return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );
    }
    double multiply(POINT sp,POINT ep,POINT op)
    {
     return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
    }
    double ptoldist(POINT p,LINESEG l)
    {
     return abs(multiply(p,l.e,l.s))/dist(l.s,l.e);
    }
    POINT p[100];
    POINT tmp[10];
    int main(){
        for(int i=0;i<4;i++){
            scanf("%lf%lf",&tmp[i].x,&tmp[i].y);
        }
        tmp[4]=tmp[0];
        int cnt = 0;
        for(int i=1;i<=4;i++){
            p[cnt++]=tmp[i-1];
            p[cnt].x=(tmp[i-1].x+tmp[i].x)/2.0;
            p[cnt++].y=(tmp[i-1].y+tmp[i].y)/2.0;
        }
        int ans = 0;
        int n = cnt;
        int k = n/2;
        for(int i=0;i+k<n;i++){
            int flag = 0;
            for(int j=0;j<=n;j++){
                int a1 = (i+j+n)%n;
                int a2 = (i-j+n)%n;
                if(fabs(ptoldist(p[a1],LINESEG(p[i],p[i+k]))-ptoldist(p[a2],LINESEG(p[i],p[i+k])))>EP)
                {
                    flag = 1;
                    break;
                }
                POINT c = POINT((p[a1].x+p[a2].x)/2.0,(p[a1].y+p[a2].y)/2.0);
                if(ptoldist(c,LINESEG(p[i],p[i+k]))>EP){
                    flag = 1;
                    break;
                }
                double x1 = p[i].x - p[i+k].x;
                double y1 = p[i].y - p[i+k].y;
                double x2 = p[a1].x - p[a2].x;
                double y2 = p[a1].y - p[a2].y;
    
                if(fabs(x1*x2+y1*y2)>EP){
                    flag = 1;
                    break;
                }
            }
            if(flag==0)ans+=2;
        }
        cout<<ans<<endl;
    }
  • 相关阅读:
    移动端web
    递归求和
    json的基础了解
    冒泡排序的编程方法
    js面向对象
    1002,javascript的原型属性
    1001,instanceof关键字以及typeof关键字
    19,简述一下src与href的区别(不懂)
    531,<form>action属性
    530,css outline属性
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5697860.html
Copyright © 2011-2022 走看看