zoukankan      html  css  js  c++  java
  • HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=4786

    Description

     Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

    Input

      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).

    Output

      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.

    Sample Input

    2
    4 4
    1 2 1
    2 3 1
    3 4 1
    1 4 0
    5 6
    1 2 1
    1 3 1
    1 4 1
    1 5 1
    3 5 1
    4 2 1

    Sample Output

    Case #1: Yes
    Case #2: No

    Hint

    题意

    给你一个由白边和黑边组成的图,问你能不能找到一个生成树,使得白边的个数是Fibonacci数

    题解:

    考虑白边最多情况的生成树时候白边数量为Max,最少的时候为Min

    那么[Min,Max]这个区间内的白边数量都可以取到

    所以求出Min和Max即可

    坑点:图不联通

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2e5+7;
    struct node{
        int x,y,z;
    }p[maxn];
    bool cmp1(node A,node B){
        return A.z<B.z;
    }
    bool cmp2(node A,node B){
        return A.z>B.z;
    }
    int fa[maxn];
    int fi(int x){
        return x==fa[x]?x:fa[x]=fi(fa[x]);
    }
    void uni(int x,int y){
        x=fi(x),y=fi(y);
        if(x==y)return;
        else fa[x]=fa[y];
    }
    void solve(int Cas){
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            fa[i]=i;
        for(int i=1;i<=m;i++)
            scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
        sort(p+1,p+1+m,cmp1);
        int x1=0,x2=0;
        int D = 0;
        for(int i=1;i<=m;i++){
            if(fi(p[i].x)!=fi(p[i].y)){
                x1+=p[i].z;
                uni(p[i].x,p[i].y);
                D = D + 1;
            }
        }
        if(D!=n-1){
            printf("Case #%d: No
    ",Cas);
            return;
        }
        for(int i=1;i<=n;i++)
            fa[i]=i;
        sort(p+1,p+1+m,cmp2);
        for(int i=1;i<=m;i++){
            if(fi(p[i].x)!=fi(p[i].y)){
                x2+=p[i].z;
                uni(p[i].x,p[i].y);
            }
        }
        long long a=1,b=1;
        int flag = 0;
        while(a<=x2||b<=x2){
            if(a>=x1&&a<=x2)
                flag=1;
            if(b>=x1&&b<=x2)
                flag=1;
            a=a+b;
            if(a>b)swap(a,b);
        }
        if(a>=x1&&a<=x2)
            flag=1;
        if(b>=x1&&b<=x2)
            flag=1;
        if(flag)printf("Case #%d: Yes
    ",Cas);
        else printf("Case #%d: No
    ",Cas);
    }
    int main(){
        int t;
        scanf("%d",&t);
        for(int cas=1;cas<=t;cas++)solve(cas);
    }
  • 相关阅读:
    mongodb数据库迁移
    idea激活
    常见加密方式
    restful请求风格使用详解
    Jreble破解使用
    websocket入门与分布式websocket
    分布式Session的解决方案
    mysql基础知识与优化总结
    分布式事务详解
    多线程总结与使用
  • 原文地址:https://www.cnblogs.com/qscqesze/p/7151115.html
Copyright © 2011-2022 走看看