How to systematically generate all the permutations of a given sequence?
see http://en.wikipedia.org/wiki/Next_permutation
1, Find the largest index k such that a[k] < a[k + 1]. If no such index exists, the permutation is the last permutation.
2, Find the largest index l such that a[k] < a[l]. Since k+1 is such an index, l is well defined and satisfies k < l.
3, Swap a[k] with a[l].
4, Reverse the sequence from a[k+1] up to and including the last element a[n].
第一步以后,a[k]以后的是一个递减序列,已经是最大的了,再折腾也没用;
第二步,如果带上a[k],那么lexicographical order的下一个一定是以比a[k]大的一个数打头的,从后面找到刚好比a[k]大的那一个,假设是a[l];
第三步,将a[l]提到前面,与a[k]互换,这时候,a[k]后面的仍然是降序的。
第四步,把a[k]后面的逆转一下,从降序到升序,这样就得到了恰好比之前序列大一号的序列(打头的是刚好更大的那个,后面的是升序)。
#include <stdio.h>
#include <stdlib.h>
int arr[] = {1, 3, 2, 4};
#define NR_ELEM(arr) (sizeof(arr) / sizeof(arr[0]))
int comp(const void *lhs, const void *rhs)
{
return *(const int *)lhs - *(const int *)rhs;
}
inline void print_arr()
{
int i;
for (i = 0; i < NR_ELEM(arr); i++)
printf("%d, ", arr[i]);
printf("\n");
}
// return 1 if there's another (lexicographically larger) permutation, 0 otherwise.
int next_permutation()
{
int i, j, k, l;
// Step 1, find the largest k s.t. arr[k] < arr[k+1]
for (k = NR_ELEM(arr) - 2; k >= 0; k--)
if (arr[k] < arr[k + 1])
break;
if (k < 0)
return 0;
// Step 2, find the largest l(el) s.t. arr[k] < arr[l]
for (l = NR_ELEM(arr) - 1; l > k; l--)
if (arr[k] < arr[l])
break;
// Step 3, swap arr[k] & arr[l]
int temp = arr[k];
arr[k] = arr[l];
arr[l] = temp;
// Step 4, reverse arr[k+1, ]
for (i = k + 1, j = NR_ELEM(arr) - 1; i < j; i++, j--) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
return 1;
}
int main(int argc, char *argv[])
{
qsort(arr, NR_ELEM(arr), sizeof(arr[0]), comp);
print_arr();
while (next_permutation())
print_arr();
return 0;
}