Problem Description
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes, exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
C#
使用C#处理这类问题,是相当爽的。Because CSharp has LINQ!
解决这道题的思路是这样:
- 找出1001到9999中所有的素数;
- 基于第一步找出的素数数组,进行分组,分组的依据是,如果两个数所用的字符集相同,不如1013和1031属于一组,因为它们的字符集都是{0, 1, 1, 3};
- 筛选出每一组里面长度大于等于3的组;
- 针对步骤3的结果的每一组,看是否满足题目要求,这一步就比较简单了;
代码如下:
public static void Run() { // generate primes from 1001 to 9999 var primeList = GeneratePrimeList(); // use linq to get the valid list in which each element has 3 or more numbers which are permutations of each other var groupedList = from item in primeList group item by Convert.ToInt32(string.Concat(item.ToString().ToCharArray().OrderBy<char, char>(c => c))) into itemGroup where itemGroup.Count() >= 3 select itemGroup; // check each group and output the result groupedList.ToList().ForEach((ig) => CheckAndOutputIsValid(ig)); }
It looks so simple and so fantastic, isn’t it? LINQ is amazing!
CheckAndOutputIsValid
private static void CheckAndOutputIsValid(IGrouping<int, int> ig) { List<int> offsetList = new List<int>(); int count = ig.Count(); for (int i = 1; i < count - 1; i++) { offsetList.Clear(); for (int j = 0; j <count; j++) { if (j == i) continue; int offset = j > i ? ig.ElementAt(j) - ig.ElementAt(i) : ig.ElementAt(i) - ig.ElementAt(j); offsetList.Add(offset); } // check if there have equal offsets var result = from item in offsetList group item by item into itemGroup where itemGroup.Count() >= 2 select itemGroup; // output the valid result if (result.Count() > 0) { int middle = ig.ElementAt(i); int offset = result.First().Key; Console.WriteLine("{0}, {1}, {2}, offset={3}", middle - offset, middle, middle + offset, offset); } } }