zoukankan      html  css  js  c++  java
  • (dp)LeetCode Weekly Contest 34 -Non-negative Integers without Consecutive Ones

    Given a positive integer n, find the number of non-negative integers less than or equal to n, whose binary representations do NOT contain consecutive ones.

    Example 1:

    Input: 5
    Output: 5
    Explanation: 
    Here are the non-negative integers <= 5 with their corresponding binary representations:
    0 : 0
    1 : 1
    2 : 10
    3 : 11
    4 : 100
    5 : 101
    Among them, only integer 3 disobeys the rule (two consecutive ones) and the other 5 satisfy the rule. 
    

    Note: 1 <= n <= 1e9

    为解决本题,首先需要考虑n位二进制数码,有多少种组合满足:不存在连续的1

    n=1时显然为2,n=2时为3,下面考虑n>=3的情况。设该数列为an

    ①尾数为0 则不考虑尾数,只看前n-1位必定亦满足该条件 情况数为an-1

    ②尾数为1,则倒数第二位一定为0 (否则已经存在连续的1) 情况数为an-2

    故得到递推公式 an=an-1+an-2 即为斐波那契数列

    回到题目,考虑两个例子

    若为1010100 则情况数为a[6]+a[4]+a[2]+1

    若为 1011010 则情况数为a[6]+a[4]+a[3]

    分析后发现求解步骤。遇到1加上a[i](i为该1的下标,从末尾下标为0开始计算)遇到连续两个1后加上了就终止循环。如果加到最后才停止,说明本身该数也是满足要求的,答案+1

     1 class Solution {
     2 public:
     3     int f[40];
     4     int a[40];
     5     int findIntegers(int num) {
     6         f[0]=1;f[1]=2;
     7         for(int i=2;i<=36;i++)
     8             f[i]=f[i-1]+f[i-2];
     9         int cnt=0;
    10         while(num)
    11         {
    12             a[cnt++]=num%2;
    13             num/=2;
    14         }
    15         int an=0,i,la=0;
    16         for(i=cnt-1;i>=0;i--)
    17         {
    18             if(a[i]==1)
    19             {
    20                 an+=f[i];
    21                 if(la==1)
    22                     break;
    23             }
    24             la=a[i];
    25         }
    26         if(i==-1)
    27             ++an;
    28         return an;
    29     }
    30 };
  • 相关阅读:
    MinkowskiPooling池化(上)
    稀疏张量基础
    稀疏张量网络
    英伟达TRTTorch
    闵可夫斯基引擎Minkowski Engine
    reactive和reactor
    today search
    today news 2020-8-8
    如何去写一本精品小书?
    today news
  • 原文地址:https://www.cnblogs.com/quintessence/p/6917592.html
Copyright © 2011-2022 走看看