以比特币网络为例,可以具体看其中如何使用了区块链技术。
首先,比特币客户端发起一项交易,广播到比特币网络中并等待确认。网络中的节点会将一些收到的等待确认的交易记录打包在一起(此外还要包括前一个区块头部的哈希值等信息),组成一个候选区块。然后,试图找到一个nonce串(随机串)放到区块里,使得候选区块的哈希结果满足一定条件(比如小于某个值)。这个nonce串的查找需要一定的时间去进行计算尝试。
一旦节点算出来满足条件的nonce串,这个区块在格式上就被认为是“合法”了,就可以尝试在网络中将它广播出去。其他节点收到候选区块,进行验证,发现确实符合约定条件了,就承认这个区块是一个合法的新区块,并添加到自己维护的区块链上。当大部分节点都将区块添加到自己维护的区块链结构上时,该区块被网络接受,区块中所包括的交易也就得到确认。
当然,在实现上还会有很多额外的细节。这里面比较关键的步骤有两个:一个是完成对一批交易的共识(创建区块结构);一个是新的区块添加到区块链结构上,被大家认可,确保未来无法被篡改。
比特币的这种基于算力寻找nonce串的共识机制称为工作量证明 (Proof of Work,PoW)。目前,要让哈希结果满足一定条件,并无已知的快速启发式算法,只能进行尝试性的暴力计算。尝试的次数越多(工作量越大),算出来的概率越大。
通过调节对哈希结果的限制,比特币网络控制平均约10分钟产生一个合法区块。算出区块的节点将得到区块中所有交易的管理费和协议固定发放的奖励费(目前是12.5比特币,每四年减半),这个计算新区块的过程俗称为挖矿。
读者可能会关心,比特币网络是任何人都可以加入的,如果网络中存在恶意节点单,能否进行恶意操作来对区块链中的记录进行篡改,从而破坏整个比特币网络系统。比如最简单的,故意不承认收到的别人产生的合法候选区块,或者干脆拒绝来自其他节点的交易等。
实际上,比特币网络中存在大量(据估计数千个)的维护节点,而且大部分节点都是正常工作的,默认都只承认所看到的最长的链结构。只要网络中不存在超过一半的节点提前勾结一起采取恶意行动,则最长的链将很大概率上成为最终合法的链。而且随着时间增加,这个概率会越来越大。例如,经过6个区块生成后,即便有一半的节点联合起来想颠覆被确认的结果,其概率也仅为(1/2)6 ≈1.6%,即低于1/60的可能性。
当然,如果整个网络中大多数的节点都联合起来作恶,可以导致整个系统无法正常工作。要做到这一点,往往意味着付出很大的代价,跟通过作恶得到的收益相比,得不偿失。
提示 区块链结构与Git版本管理的有向无环图数据结构,在设计上有异曲同工之妙。