1.计算密集型下进程与线程对比
import time,os from multiprocessing import Process from threading import Thread #计算密集型 def work(): res= 0 for i in range(100000): res+= i if __name__ == '__main__': l= [] start= time.time() for i in range(4): # p= Process(target= work) #0.3040175437927246 p= Thread (target= work) #0.047002553939819336 l.append(p) p.start() for p in l: p.join() stop= time.time() print('run time is %s'%(stop-start))
2.IO密集型下进程与线程的对比
from multiprocessing import Process from threading import Thread def work1(): time.sleep(2) def work2(): time.sleep(2) def work3(): time.sleep(2) if __name__ == '__main__': l= [] start= time.time() # p1=Process (target= work1) #2.2871310710906982 # p2 = Process(target=work2) # p3 = Process(target=work3) t1= Thread (target= work1) #2.018115282058716 t2 = Thread(target=work2) t3 = Thread(target=work3) t1.start() t2.start() t3.start() t1.join() t2.join() t3.join() stop= time.time() print('run time is %s'%(stop- start))
3、定时器
from threading import Timer,current_thread def task(x): print('%s run....' %x) print(current_thread().name) #打印进程名 if __name__ == '__main__': t=Timer(3,task,args=(10,)) t.start() print('主')
4、进程queue方法
(1)队列 先进先出queue.Queue
q=queue.Queue(3) q.put(1) q.put(2) q.put(3) print(q.get()) print(q.get()) print(q.get())
(2)堆栈 先进后出 queue.LifoQueue
import queue q=queue.LifoQueue() q.put(1) q.put(2) q.put(3) print(q.get()) print(q.get()) print(q.get())
(3)优先级队列:优先级高的先出来,数字越小,优先级越高
q=queue.PriorityQueue() q.put((3,'data1')) q.put((-10,'data2')) q.put((11,'data3')) print(q.get()) print(q.get()) print(q.get())