1.复合函数的链式求导
教科书中已有。
2.复杂函数的链式求导
下图左侧为计算序列,右侧为导数序列 。
计算序列形式的每一步都与其导数计算的步骤有一一对应的关系。
3.Theano中的求导
Theano首先将计算过程编译成一个图模型:
采用后向传播的方式从每个节点获取梯度。
下面为t.grad使用示例。其中fill((x** TensorConstant{2}), TensorConstant{1.0})指创建一个与x**2同样大小的矩阵,并填充1.0。
所以第一个求导结果是 2*x 。
第二个求导的结果可以简化为
(1 / (1 + exp(-x) * (1 + exp(-x)) * exp(-x))
import theano.tensor as T from theano import pp from theano import function x= T.dscalar('x') y= x ** 2 gy= T.grad(y, x) f= function([x], gy) print pp(gy) print f(4) """ ((fill((x ** TensorConstant{2}), TensorConstant{1.0}) * TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1}))) 8.0 """ x= T.dmatrix('x') s= T.sum(1 / (1 + T.exp(-x))) sx= 1 / (1 + T.exp(-x)) gs= T.grad(s, x) dlogistic= function([x], gs) print pp(gs) """ (-(((-(fill((TensorConstant{1} / (TensorConstant{1} + exp((-x)))), fill(Sum{acc_dtype=float64}((TensorConstant{1} / (TensorConstant{1} + exp((-x))))), TensorConstant{1.0})) * TensorConstant{1})) / ((TensorConstant{1} + exp((-x))) * (TensorConstant{1} + exp((-x))))) * exp((-x)))) """ a=[[0, 1], [-1, -2]] print dlogistic(a) k=function([x],sx) print k(a)*(1-k(a)) """ [[ 0.25 0.19661193] [ 0.19661193 0.10499359]] [[ 0.25 0.19661193] [ 0.19661193 0.10499359]] """
4.简易自动求导
# coding: utf8 class Vars(object): def __init__(self): self.count = 0 self.defs = {} self.lookup = {} def add(self, *v): name = self.lookup.get(v, None) # 避免重复 if name is None: if v[0] == '+': if v[1] == 0: return v[2] elif v[2] == 0: return v[1] elif v[0] == '*': if v[1] == 1: return v[2] elif v[2] == 1: return v[1] elif v[1] == 0: return 0 elif v[2] == 0: return 0 self.count += 1 name = "v" + str(self.count) self.defs[name] = v self.lookup[v] = name return name def __getitem__(self, name): return self.defs[name] def __iter__(self): return self.defs.iteritems() def get_func(self,name): v= self.defs[name] if v[0] in ['+','*']: return self.get_func(v[1])+v[0]+self.get_func(v[2]) elif v[0]=='input': return v[1] else: return v[0]+'('+self.get_func(v[1])+')' def diff(vars, acc, v, w): if v == w: return acc # 终点 v = vars[v] if v[0] == 'input': return 0 # 终点 elif v[0] == "sin": return diff(vars, vars.add("*", acc, vars.add("cos", v[1])), v[1], w) # 相应导数 elif v[0] == '+': gx = diff(vars, acc, v[1], w) gy = diff(vars, acc, v[2], w) return vars.add("+", gx, gy) # 链式法则 elif v[0] == '*': gx = diff(vars, vars.add("*", v[2], acc), v[1], w) gy = diff(vars, vars.add("*", v[1], acc), v[2], w) return vars.add("+", gx, gy) # 链式法则 raise NotImplementedError def autodiff(vars, v, *wrt): return tuple(diff(vars, 1, v, w) for w in wrt) # z = (sin x) + (x * y) vars = Vars() x = vars.add("input",'x') y = vars.add("input",'y') z = vars.add("+", vars.add("*",x,y),vars.add("sin",x)) #sin(x)+x*y result= autodiff(vars, z, x, y) for k, v in vars: print k, v for v_ in result: print v_, vars.get_func(v_) """ v1 ('input', 'x') v2 ('input', 'y') v3 ('*', 'v1', 'v2') x*y v4 ('sin', 'v1') sin(x) v5 ('+', 'v3', 'v4') sin(x)+x*y 后两个为求导时增加的 v6 ('cos', 'v1') cos(x) v7 ('+', 'v2', 'v6') cos(x)+y 函数表达式 v7, y+cos(x) v1, x """