zoukankan      html  css  js  c++  java
  • CNN4 参数优化

    之前在Caffe学习 一 网络参数和自定义网络包含一些参数的设置项。

    momentum是梯度下降法中一种常用的加速技术。对于一般的SGD,其表达式为

    w(t+1)=w(t)-lr*grad

    w沿负梯度方向下降。

    而带momentum项的SGD则写生如下形式:

    v(t+1)=momentum*v(t)-lr*grad ; w(t+1)=w(t)+v(t+1)

    即如果上次的v与这次的负梯度方向相同,那本次下降的幅度就会加大,以达加速收敛。

    learning rate下降有多种方式,本例中每2000次降低为0.9倍。

    对500个测试数据,正确率可以达到98.6%,即有7张没有正确分辨。

    # coding:utf8
    import cPickle
    import numpy as np
    
    
    class ConvPoolLayer(object):
        def __init__(self, image_shape,filter_shape,poolsize=(2,2)):
            self.filter_shape = filter_shape
            self.image_shape = image_shape
            self.weights = np.random.normal(loc=0, scale=np.sqrt(1.0/np.prod(filter_shape[1:])),
                                      size=(np.prod(filter_shape[1:]),filter_shape[0]))
            self.b = np.random.normal(loc=0, scale=0.2, size=(1,filter_shape[0],1,1))
            self.poolsize = poolsize
            self.samp_shape=(image_shape[-2] - filter_shape[-2] + 1,image_shape[-1] - filter_shape[-1] + 1)
            self.out_shape=(self.samp_shape[0]/poolsize[0],self.samp_shape[1]/poolsize[1])
            self.v=0
    
        def im2col(self,a):
            n, m, h, w = self.image_shape
            vn, vm, vh, vw = self.filter_shape
            t = h - vh + 1
            kh = t ** 2
            kw = vh * vh
            z = np.zeros((n, kh, kw * m))
            for i in range(n):
                for j in range(m):
                    kt = []
                    for it in range(t):
                        for jt in range(t):
                            kt.append((a[i, j, it:it + vh, jt:jt + vh]).flatten())
                    z[i, :, j * kw:j * kw + kw] = kt
            z = np.reshape(z, (n * kh, kw * m))
            return z
    
        def col2im(self,a):
            n, m, h, w = self.image_shape
            vn, vm, vh, vw = self.filter_shape
            t = h - vh + 1
            kh = t ** 2
            kw = vh * vh
            a = np.reshape(a, (n, kh, kw * m))
            z = np.zeros((n, m, h, h))
            for i in range(n):
                for k in range(m):
                    for j in range(h):
                        rh = vh * min(j, vh - 1)
                        b = max(j + 1 - vh, 0) * t
                        z[i, k, j] = np.append(a[i, b, rh:rh + vh], a[i, b + 1:b + t, rh + vh - 1])
            return z
    
        def fw_shape(self,a):
            res = np.reshape(a, (self.image_shape[0], -1, self.filter_shape[0]))
            res = np.rollaxis(res, 2, 1)
            res = np.reshape(res, (self.image_shape[0], -1, self.samp_shape[0], self.samp_shape[1]))
            return res
    
        def bp_shape(self,a):
            res = np.reshape(a, (self.image_shape[0], self.filter_shape[0], -1))
            res = np.rollaxis(res, 1, 3)
            res = np.reshape(res, (-1, self.filter_shape[0]))
            return res
    
        def feedforward(self, a):
            z = self.im2col(a)
            res = np.dot(z, self.weights)
            res = self.fw_shape(res)
            self.out = self.relu(res+self.b)
            return np.array(self.pool2d(self.out))
    
        def backprop(self, x, dnext,eta=0.001,weight_decay=0,momentum=0.9):
            if dnext.ndim<3:
                dnext = np.reshape(dnext,(self.image_shape[0],self.filter_shape[0], self.out_shape[0], -1))
            u = self.relu_prime(self.out)
            dnext = np.multiply(u,self.up(dnext,self.poolsize[0]))
            delta = self.bp_shape(dnext)/self.image_shape[0]
            x=self.im2col(x)
            out_delta = np.dot(delta, self.weights.T)
            out_delta=self.col2im(out_delta)
            w = np.dot(x.T, delta)
            w = eta * w+weight_decay*self.weights**2
            self.v = momentum * self.v - w
            self.weights += self.v
            self.b -= eta * np.reshape(np.sum(delta,0),(self.b.shape))
            return out_delta
    
        def pool2d(self,input, ds=(2, 2), mode='max'):
            fun = np.max
            if mode == 'sum':
                fun = np.sum
            elif mode == 'average':
                fun = np.average
            n, m, h, w = np.shape(input)
            d, s = ds
            zh = h / d + h % d
            zw = w / s + w % s
            z = np.zeros((n, m, zh, zw))
            for k in range(n):
                for o in range(m):
                    for i in range(zh):
                        for j in range(zw):
                            z[k, o, i, j] = fun(input[k, o, d * i:min(d * i + d, h), s * j:min(s * j + s, w)])
            return z
    
        def up(self,a,n):
            b=np.ones((n,n))
            return np.kron(a,b)
    
        def relu(self,z):
            return np.maximum(z, 0.0)
    
        def relu_prime(self,z):
            z[z>0]=1
            return z
    
    class SoftmaxLayer(object):
        def __init__(self, in_num=100,out_num=10):
            self.weights = np.random.randn(in_num, out_num)/np.sqrt(out_num)
            self.v=0
    
        def feedforward(self, input):
            self.out=self.softmax(np.dot(input, self.weights))
            return self.out
    
        def backprop(self, input, y,eta=0.001,weight_decay=0,momentum=0.9):
            o=self.out
            delta =o-y
            out_delta=np.dot(delta,self.weights.T)
            w = np.dot(input.T,delta)
            w=eta*w+weight_decay*self.weights**2
            self.v = momentum * self.v - w
            self.weights += self.v
            return out_delta
    
        def softmax(self,a):
            m = np.exp(a)
            return m / (np.sum(m,axis=1)[:,np.newaxis])
    
    class FullLayer(object):
        def __init__(self, in_num=720,out_num=100):
            self.in_num=in_num
            self.out_num=out_num
            self.biases = np.random.randn(out_num)
            self.weights = np.random.randn(in_num, out_num)/np.sqrt(out_num)
            self.v=0
    
        def feedforward(self, x):
            if x.ndim>2:
                x = np.reshape(x, (len(x), self.in_num))
            self.out = self.sigmoid(np.dot(x, self.weights)+self.biases)
            return self.out
    
        def backprop(self, x,delta,eta=0.001,weight_decay=0,momentum=0.9):
            if x.ndim>2:
                x = np.reshape(x, (len(x), self.in_num))
            sp=self.sigmoid_prime(self.out)
            delta = delta * sp
            out_delta = np.dot(delta, self.weights.T)
            w = np.dot( x.T,delta)
            w=eta*w+weight_decay*self.weights**2
            self.v=momentum*self.v-w
            self.weights +=self.v
            self.biases -= eta*np.sum(delta,0)
            return out_delta
    
        def sigmoid(self,z):
            return 1.0/(1.0+np.exp(-z))
    
        def sigmoid_prime(self,z):
            return z*(1-z)
    
    class Network(object):
        def __init__(self, layers):
            self.layers=layers
            self.num_layers = len(layers)
            self.a=[]
    
        def feedforward(self, x):
            self.a.append(x)
            for layer in self.layers:
                x=layer.feedforward(x)
                self.a.append(x)
            return x
    
        def SGD(self, training_data, test_data,epochs, mini_batch_size, lr=0.001,weight_decay=0.0005,momentum=0.9):
            self.n = len(training_data[0])
            self.mini_batch_size=mini_batch_size
            self.weight_decay = weight_decay
            self.momentum=momentum
            self.lr = lr
            rate=np.exp(np.log(0.9)/2000)**mini_batch_size
            cx=range(epochs)
            for j in cx:
                for k in xrange(0, self.n , mini_batch_size):
                    self.lr=self.lr*rate
                    batch_x = np.array(training_data[0][k:k + mini_batch_size])
                    batch_y = training_data[1][k:k + mini_batch_size]
                    self.backprop(batch_x,batch_y)
                    if k%500==0:
                        print "Epoch {0}:{1},test:{2},cost={3},lr={4}".format(j,k,
                        self.evaluate([test_data[0],test_data[1]]),self.cost,self.lr)
    
        def backprop(self, x_in, y):
            self.feedforward(x_in)
            for i in range(self.num_layers):
                delta=self.layers[-i-1].backprop(self.a[-i-2],y,eta=self.lr,
                                weight_decay=self.weight_decay,momentum=self.momentum)
                y=delta
    
        def evaluate(self, test_data):
            x,y=test_data
            num=len(x)
            x=[self.feedforward(np.array(x[size*i:size*i+size])) for i in range((num/size))]
            x=np.reshape(x,(num,np.shape(x)[-1]))
            xp = np.argmax(x, axis=1)
            yp= np.argmax(y, axis=1) if y[0].ndim else y
            self.cost = -np.mean(np.log(x)[np.arange(num),yp])
            return np.mean(yp == xp)*100
    
    
    if __name__ == '__main__':
            def get_data(data):
                return [np.reshape(x, (1,28,28)) for x in data[0]]
    
            def get_label(i):
                c = np.zeros((10))
                c[i] = 1
                return c
    
            f = open('data/mnist.pkl', 'rb')
            training_data, validation_data, test_data = cPickle.load(f)
            training_inputs = get_data(training_data)
            training_label=[get_label(y_) for y_ in training_data[1]]
            test_inputs = get_data(test_data)
            test = zip(test_inputs,test_data[1])
            size=50
            net = Network([ConvPoolLayer(image_shape=[size,1,28,28],filter_shape=[20,1,5,5],poolsize=(2,2)),
                           ConvPoolLayer(image_shape=[size,20,12,12],filter_shape=[40,20,5,5], poolsize=(2,2)),
                           FullLayer(in_num=40*4*4,out_num=100),
                           SoftmaxLayer(in_num=100,out_num=10)])
            net.SGD([training_inputs,training_label],[test_inputs[:500],test_data[1][:500]],
                    epochs=3,mini_batch_size=size, lr=0.005,weight_decay=0,momentum=0.9)
    
            # Epoch 0:23500,test:98.6,cost=0.0728153919619,lr=0.00144602417273
            # Epoch 0:33000,test:98.6,cost=0.053761519132,lr=0.000876652494295
            # Epoch 0:33500,test:98.6,cost=0.0537392805265,lr=0.000853862813757
            # Epoch 0:34000,test:98.6,cost=0.0546350815828,lr=0.000831665579532
  • 相关阅读:
    鼠标事件&键盘事件
    监听/移除事件 & 事件流 & 事件对象 & 事件委托
    javaScript操作cookie出现同名key
    Vue入门干货,以及遇到的坑
    WPF中Popup上的textbox无法切换到中文输入法
    RichTextBox FlowDocument类型操作
    Web微信协议
    计算机专业术语对照
    Ext.Net一般处理程序上传文件
    C# ObjectCache、OutputCache缓存
  • 原文地址:https://www.cnblogs.com/qw12/p/6371655.html
Copyright © 2011-2022 走看看