zoukankan      html  css  js  c++  java
  • CNN网络结构-VGG

    背景

    2014年,VGG分别在定位和分类问题中获得了第一和第二名,在其他数据集上也实现了最好的结果。

    结构

    VGGNet探索了神经网络的深度与性能之间的关系,表明在结构相似的情况下,网络越深性能越好。

    模型中大量使用3*3的卷积核的串联,构造出16到19层的网络。

    2个3*3的卷积核的串联相当于5*5的卷积核。 
    3个3*3的卷积核的串联相当于7*7的卷积核。

    其意义在于7*7所需要的参数为49,3个3*3的卷积核参数为27个,几乎减少了一半。

    在C中还是用了1*1的卷积核,而且输出通道和输入通道数并没有发生改变,只是起到了线性变换的作用,其意义在VGG中其实意义不大。

    结构图如下:

    实现

        data = mx.symbol.Variable(name="data")
        # group 1
        conv1_1 = mx.symbol.Convolution(data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
        relu1_1 = mx.symbol.Activation(data=conv1_1, act_type="relu", name="relu1_1")
        pool1 = mx.symbol.Pooling(
            data=relu1_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool1")
        # group 2
        conv2_1 = mx.symbol.Convolution(
            data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
        relu2_1 = mx.symbol.Activation(data=conv2_1, act_type="relu", name="relu2_1")
        pool2 = mx.symbol.Pooling(
            data=relu2_1, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool2")
        # group 3
        conv3_1 = mx.symbol.Convolution(
            data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
        relu3_1 = mx.symbol.Activation(data=conv3_1, act_type="relu", name="relu3_1")
        conv3_2 = mx.symbol.Convolution(
            data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
        relu3_2 = mx.symbol.Activation(data=conv3_2, act_type="relu", name="relu3_2")
        pool3 = mx.symbol.Pooling(
            data=relu3_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool3")
        # group 4
        conv4_1 = mx.symbol.Convolution(
            data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
        relu4_1 = mx.symbol.Activation(data=conv4_1, act_type="relu", name="relu4_1")
        conv4_2 = mx.symbol.Convolution(
            data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
        relu4_2 = mx.symbol.Activation(data=conv4_2, act_type="relu", name="relu4_2")
        pool4 = mx.symbol.Pooling(
            data=relu4_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool4")
        # group 5
        conv5_1 = mx.symbol.Convolution(
            data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
        relu5_1 = mx.symbol.Activation(data=conv5_1, act_type="relu", name="relu5_1")
        conv5_2 = mx.symbol.Convolution(
            data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
        relu5_2 = mx.symbol.Activation(data=conv5_2, act_type="relu", name="conv1_2")
        pool5 = mx.symbol.Pooling(
            data=relu5_2, pool_type="max", kernel=(2, 2), stride=(2,2), name="pool5")
        # group 6
        flatten = mx.symbol.Flatten(data=pool5, name="flatten")
        fc6 = mx.symbol.FullyConnected(data=flatten, num_hidden=4096, name="fc6")
        relu6 = mx.symbol.Activation(data=fc6, act_type="relu", name="relu6")
        drop6 = mx.symbol.Dropout(data=relu6, p=0.5, name="drop6")
        # group 7
        fc7 = mx.symbol.FullyConnected(data=drop6, num_hidden=4096, name="fc7")
        relu7 = mx.symbol.Activation(data=fc7, act_type="relu", name="relu7")
        drop7 = mx.symbol.Dropout(data=relu7, p=0.5, name="drop7")
        # output
        fc8 = mx.symbol.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8")
        softmax = mx.symbol.SoftmaxOutput(data=fc8, name='softmax')
        return softmax
  • 相关阅读:
    内存映射文件原理探索(转)
    inux内存映射和共享内存理解和区别
    MySQL中的sleep函数介绍
    flask源码解析之上下文为什么用栈
    linux system函数详解
    Python中的可迭代对象、迭代器和生成器,协程的异同点
    GB2312汉字区位码、交换码和机内码转换方法 (ZT)
    pthread_cond_signal该放在什么地方?
    IPC介绍——10个ipcs例子
    lsof
  • 原文地址:https://www.cnblogs.com/qw12/p/8471209.html
Copyright © 2011-2022 走看看