zoukankan      html  css  js  c++  java
  • 图像处理3 Felzenszwalb算法的Python实现

    介绍

    算法介绍上一篇随笔中很详细。

    图像处理2 基于图的图像分割算法

    实现和效果

     

    # coding:utf8
    import cv2
    import numpy as np
    from skimage import io as sio
    from skimage.segmentation import felzenszwalb
    import matplotlib.pyplot as plt
    from _felzenszwalb_cy import _felzenszwalb_cython
    
    
    def felzenszwalb_test(img,sigma,kernel,k, min_size):
        # 先使用纹理特征滤波,再计算距离
        img = np.asanyarray(img, dtype=np.float) / 255
    
        # rescale scale to behave like in reference implementation
        k = float(k) / 255.
        img = cv2.GaussianBlur(img, (kernel, kernel), sigma)
        height, width = img.shape[:2]
        num = height * width
        edges = np.zeros(((height - 1) * width * 2 + height * (width - 1) * 2, 3))
    
        # 使用RGB距离,计算四邻域
        index = np.array([i for i in range(height * width)])
        index = index.reshape((height, width))
        to_left = np.sqrt(((img[:, 1:] - img[:, :-1]) ** 2).sum(axis=2))
        to_right = to_left
        to_up = np.sqrt(((img[1:] - img[:-1]) ** 2).sum(axis=2))
        to_down = to_up
    
    
        last, cur = 0, 0
        last, cur = cur, cur + (width - 1) * height
        edges[last: cur, 0] = index[:, 1:].reshape(-1)
        edges[last: cur, 1] = index[:, :-1].reshape(-1)
        edges[last: cur, 2] = to_left.reshape(-1)
    
        last, cur = cur, cur + (width - 1) * height
        edges[last: cur, 0] = index[:, :-1].reshape(-1)
        edges[last: cur, 1] = index[:, 1:].reshape(-1)
        edges[last: cur, 2] = to_right.reshape(-1)
    
        last, cur = cur, cur + (height - 1) * width
        edges[last: cur, 0] = index[1:].reshape(-1)
        edges[last: cur, 1] = index[:-1].reshape(-1)
        edges[last: cur, 2] = to_up.reshape(-1)
    
        last, cur = cur, cur + (height - 1) * width
        edges[last: cur, 0] = index[:-1].reshape(-1)
        edges[last: cur, 1] = index[1:].reshape(-1)
        edges[last: cur, 2] = to_down.reshape(-1)
    
        # 将边按照不相似度从小到大排序
        edges = [edges[i] for i in range(edges.shape[0])]
        edges.sort(key=lambda x: x[2])
    
        # 构建无向图(树)
        class universe(object):
            def __init__(self, n, k):
                self.f = np.array([i for i in range(n)])  #
                self.r = np.zeros_like(self.f)   # root
                self.s = np.ones((n))  # 存储像素点的个数
                self.t = np.ones((n)) * k  # 存储不相似度
                self.k = k
    
            def find(self, x):    # Find root of node x
                if x == self.f[x]:
                    return x
                return self.find(self.f[x])
    
            def join(self, a, b):  # Join two trees containing nodes n and m
                if self.r[a] > self.r[b]:
                    self.f[b] = a
                    self.s[a] += self.s[b]
                else:
                    self.f[a] = b
                    self.s[b] += self.s[a]
                    if self.r[a] == self.r[b]:
                        self.r[b] += 1
    
        u = universe(num, k)
        for edge in edges:
            a, b = u.find(int(edge[0])), u.find(int(edge[1]))
            if ((a != b) and (edge[2] <= min(u.t[a], u.t[b]))):
                # 更新类标号:将的类a,b标号统一为的标号a。更新该类的不相似度阈值为:k / (u.s[a]+u.s[b])
                u.join(a, b)
                a = u.find(a)
                u.t[a] = edge[2] + k / u.s[a]
    
        for edge in edges:
            a, b = u.find(int(edge[0])), u.find(int(edge[1]))
            if ((a != b) and ((u.s[a] < min_size) or u.s[b] < min_size)):
                # 分割后会有很多小区域,当区域像素点的个数小于min_size时,选择与其差异最小的区域合并
                u.join(a, b)
    
        dst = np.zeros_like(img)
    
        def locate(index):
            return index // width, index % width
    
        avg_color = np.zeros((num, 3))
    
        for i in range(num):
            f = u.find(i)
            x, y = locate(i)
            avg_color[f, :] += img[x, y, :] / u.s[f]
    
        for i in range(height):
            for j in range(width):
                f = u.find(i * width + j)
                dst[i, j, :] = avg_color[f, :]
        return dst
    
    
    if __name__ == '__main__':
        sigma = 0.5
        kernel = 3
        K, min_size = 500, 50
        image = sio.imread("test_data/0010.jpg")
        # skimage自带的felzenszwalb算法
        seg1 = felzenszwalb(image, scale=K, sigma=sigma, min_size=min_size)
        # skimage自带的felzenszwalb算法cython版转Python代码,更改了高斯模糊
        seg2 = _felzenszwalb_cython(image, scale=K, sigma=sigma, kernel=kernel,min_size=min_size)
        # felzenszwalb算法的实现,相比于上一种,区别主要在四邻域和颜色还原
        seg3=felzenszwalb_test(image, sigma, kernel,K, min_size)
    
        fig = plt.figure()
        a = fig.add_subplot(221)
        plt.imshow(image)
        a.set_title("image")
    
        a = fig.add_subplot(222)
        plt.imshow(seg1)
        a.set_title("seg1")
    
        a = fig.add_subplot(223)
        plt.imshow(seg2)
        a.set_title("seg2")
    
        a = fig.add_subplot(224)
        plt.imshow(seg3)
        a.set_title("seg3")
        plt.show()

    以下是skimage自带的felzenszwalb算法cython版转Python代码,更改了高斯模糊。

    Cython部分可以参考Python 调用 C/C++实现卷积中的介绍。

    import numpy as np
    import cv2
    
    def find_root(forest, n):
        """Find the root of node n.
        Given the example above, for any integer from 1 to 9, 1 is always returned
        """
        root = n
        while (forest[root] < root):
            root = forest[root]
        return root
    
    
    def set_root(forest, n, root):
        """
        Set all nodes on a path to point to new_root.
        Given the example above, given n=9, root=6, it would "reconnect" the tree.
        so forest[9] = 6 and forest[8] = 6
        The ultimate goal is that all tree nodes point to the real root,
        which is element 1 in this case.
        """
        while (forest[n] < n):
            j = forest[n]
            forest[n] = root
            n = j
        forest[n] = root
    
    def join_trees(forest, n, m):
        """Join two trees containing nodes n and m.
        If we imagine that in the example tree, the root 1 is not known, we
        rather have two disjoint trees with roots 2 and 6.
        Joining them would mean that all elements of both trees become connected
        to the element 2, so forest[9] == 2, forest[6] == 2 etc.
        However, when the relationship between 1 and 2 can still be discovered later.
        """
    
        if (n != m):
            root = find_root(forest, n)
            root_m = find_root(forest, m)
    
            if (root > root_m):
                root = root_m
    
            set_root(forest, n, root)
            set_root(forest, m, root)
    
    def _felzenszwalb_cython(image, scale=1, sigma=0.8,kernel=3,min_size=20):
        """Felzenszwalb's efficient graph based segmentation for
        single or multiple channels.
    
        Produces an oversegmentation of a single or multi-channel image
        using a fast, minimum spanning tree based clustering on the image grid.
        The number of produced segments as well as their size can only be
        controlled indirectly through ``scale``. Segment size within an image can
        vary greatly depending on local contrast.
    
        Parameters
        ----------
        image : (N, M, C) ndarray
            Input image.
        scale : float, optional (default 1)
            Sets the obervation level. Higher means larger clusters.
        sigma : float, optional (default 0.8)
            Width of Gaussian smoothing kernel used in preprocessing.
            Larger sigma gives smother segment boundaries.
        min_size : int, optional (default 20)
            Minimum component size. Enforced using postprocessing.
    
        Returns
        -------
        segment_mask : (N, M) ndarray
            Integer mask indicating segment labels.
        """
    
        # image = img_as_float(image)
        image = np.asanyarray(image, dtype=np.float) / 255
    
        # rescale scale to behave like in reference implementation
        scale = float(scale) / 255.
        # image = ndi.gaussian_filter(image, sigma=[sigma, sigma, 0])
        image =cv2.GaussianBlur(image, (kernel, kernel), sigma)
    
        # compute edge weights in 8 connectivity:
        down_cost = np.sqrt(np.sum((image[1:, :, :] - image[:-1, :, :])
            *(image[1:, :, :] - image[:-1, :, :]), axis=-1))
        right_cost = np.sqrt(np.sum((image[:, 1:, :] - image[:, :-1, :])
            *(image[:, 1:, :] - image[:, :-1, :]), axis=-1))
        dright_cost = np.sqrt(np.sum((image[1:, 1:, :] - image[:-1, :-1, :])
        *(image[1:, 1:, :] - image[:-1, :-1, :]), axis=-1))
        uright_cost = np.sqrt(np.sum((image[1:, :-1, :] - image[:-1, 1:, :])
            *(image[1:, :-1, :] - image[:-1, 1:, :]), axis=-1))
        costs = np.hstack([
            right_cost.ravel(), down_cost.ravel(), dright_cost.ravel(),
            uright_cost.ravel()]).astype(np.float)
    
        # compute edges between pixels:
        height, width = image.shape[:2]
        segments = np.arange(width * height, dtype=np.intp).reshape(height, width)
        down_edges = np.c_[segments[1:, :].ravel(), segments[:-1, :].ravel()]
        right_edges = np.c_[segments[:, 1:].ravel(), segments[:, :-1].ravel()]
        dright_edges = np.c_[segments[1:, 1:].ravel(), segments[:-1, :-1].ravel()]
        uright_edges = np.c_[segments[:-1, 1:].ravel(), segments[1:, :-1].ravel()]
        edges = np.vstack([right_edges, down_edges, dright_edges, uright_edges])
    
        # initialize data structures for segment size
        # and inner cost, then start greedy iteration over edges.
        edge_queue = np.argsort(costs)
        edges = np.ascontiguousarray(edges[edge_queue])
        costs = np.ascontiguousarray(costs[edge_queue])
        segments_p = np.arange(width * height, dtype=np.intp) #segments
    
        segment_size = np.ones(width * height, dtype=np.intp)
    
        # inner cost of segments
        cint = np.zeros(width * height)
        num_costs = costs.size
    
        for e in range(num_costs):
            seg0 = find_root(segments_p, edges[e][0])
            seg1 = find_root(segments_p, edges[e][1])
            if seg0 == seg1:
                continue
            inner_cost0 = cint[seg0] + scale / segment_size[seg0]
            inner_cost1 = cint[seg1] + scale / segment_size[seg1]
            if costs[e] < min(inner_cost0, inner_cost1):
                # update size and cost
                join_trees(segments_p, seg0, seg1)
                seg_new = find_root(segments_p, seg0)
                segment_size[seg_new] = segment_size[seg0] + segment_size[seg1]
                cint[seg_new] = costs[e]
    
        # postprocessing to remove small segments
        # edges = edges
        for e in range(num_costs):
            seg0 = find_root(segments_p, edges[e][0])
            seg1 = find_root(segments_p, edges[e][1])
            if seg0 == seg1:
                continue
            if segment_size[seg0] < min_size or segment_size[seg1] < min_size:
                join_trees(segments_p, seg0, seg1)
                seg_new = find_root(segments_p, seg0)
                segment_size[seg_new] = segment_size[seg0] + segment_size[seg1]
    
        # unravel the union find tree
        flat = segments_p.ravel()
        old = np.zeros_like(flat)
        while (old != flat).any():
            old = flat
            flat = flat[flat]
        flat = np.unique(flat, return_inverse=True)[1]
        return flat.reshape((height, width))
  • 相关阅读:
    java任务调度之Timer定时器
    springboot 启动的时候报java.lang.NoClassDefFoundError: org/springframework/expression/ParserContext
    Spring 体系结构
    为什么MySQL数据库要用B+树存储索引?
    Nginx反向代理服务器的安装与配置
    详细的最新版fastdfs单机版搭建
    FastDFS 分布式文件系统(部署和运维)
    linux
    Spring Cloud底层原理
    Spring中ioc的实现原理
  • 原文地址:https://www.cnblogs.com/qw12/p/9465538.html
Copyright © 2011-2022 走看看