题意 : 给出 n 维向量 W、要你构造一个 n 维向量 B = ( b1、b2、b3 ..... ) ( bi ∈ { +1, -1 } ) 、然后求出对于一个常数 α > 0 使得 || W - αB ||^2 尽量小
分析 :
将 || W - αB || ^ 2 进行化简、如下
未知数是 α
不难看出这是一个一元二次方程 Ax^2 + Bx + C
而根据实际的贪心选择
当 wi > 0 时、有 bi < 0
当 wi < 0 时、有 bi > 0
那么上述方程的 A、B、C 都可以确定并求出且 A > 0
那么根据公式法、此方程有最小值 (4AC - B^2) / (4A)
直接求就行了

#include<bits/stdc++.h> #define LL long long #define ULL unsigned long long #define scl(i) scanf("%lld", &i) #define scll(i, j) scanf("%lld %lld", &i, &j) #define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k) #define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l) #define scs(i) scanf("%s", i) #define sci(i) scanf("%d", &i) #define scd(i) scanf("%lf", &i) #define scIl(i) scanf("%I64d", &i) #define scii(i, j) scanf("%d %d", &i, &j) #define scdd(i, j) scanf("%lf %lf", &i, &j) #define scIll(i, j) scanf("%I64d %I64d", &i, &j) #define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k) #define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k) #define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k) #define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l) #define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l) #define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l) #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #define lowbit(i) (i & (-i)) #define mem(i, j) memset(i, j, sizeof(i)) #define fir first #define sec second #define VI vector<int> #define ins(i) insert(i) #define pb(i) push_back(i) #define pii pair<int, int> #define VL vector<long long> #define mk(i, j) make_pair(i, j) #define all(i) i.begin(), i.end() #define pll pair<long long, long long> #define _TIME 0 #define _INPUT 0 #define _OUTPUT 0 clock_t START, END; void __stTIME(); void __enTIME(); void __IOPUT(); using namespace std; const int maxn = 1e5 + 10; LL w[maxn], b[maxn]; int n; int main(void){__stTIME();__IOPUT(); printf("%d", b); int nCase; sci(nCase); while(nCase--){ sci(n); for(int i=1; i<=n; i++){ scl(w[i]); if(w[i] < 0) b[i] = 1LL; else b[i] = - 1LL; } LL C = 0; for(int i=1; i<=n; i++) C += (w[i] * w[i]); LL B = 0; for(int i=1; i<=n; i++) B += (w[i] * b[i]); B *= (- 2LL); LL A = 0; for(int i=1; i<=n; i++) A += (b[i] * b[i]); LL p = (4 * A * C - B * B); LL q = 4 * A; LL GCD = __gcd(p, q); p /= GCD; q /= GCD; printf("%lld/%lld ", p, q); } __enTIME();return 0;} void __stTIME() { #if _TIME START = clock(); #endif } void __enTIME() { #if _TIME END = clock(); cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl; #endif } void __IOPUT() { #if _INPUT freopen("in.txt", "r", stdin); #endif #if _OUTPUT freopen("out.txt", "w", stdout); #endif }