zoukankan      html  css  js  c++  java
  • leetcode 63. Unique Paths II

    leetcode 63. Unique Paths II

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    img
    Above is a 7 x 3 grid. How many possible unique paths are there?An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    Example 1:

    Input:
    [
    [0,0,0],
    [0,1,0],
    [0,0,0]
    ]
    Output: 2
    Explanation:
    There is one obstacle in the middle of the 3x3 grid above.
    There are two ways to reach the bottom-right corner:

    1. Right -> Right -> Down -> Down
    2. Down -> Down -> Right -> Right

    Constraints:

    1 <= m, n <= 100
    It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.

    Solution

    在每一个位置[i][j],robot要么从上面一个位置下来,要么从左边一个位置过来
    所以其动态规划的状态转移方程为
    dp[i][j]=dp[i-1][j]+dp[i][j-1]
    但是如果[i][j]处有障碍,则该点不可达,为0

    class Solution {
    public:
    	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
    		int m = obstacleGrid[0].size();
    		int n = obstacleGrid.size();
    		double dp[101][101];
    		for (int i = 0; i <= m; i++)
    			dp[0][i] = 0;
    		for (int i = 0; i <= n; i++)
    			dp[i][0] = 0;
    		dp[0][1] = 1;
    		for (int i = 1; i <= n; i++)
    			for (int j = 1; j <= m; j++) {
    				if (obstacleGrid[i - 1][j - 1] == 0)
    					dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    				else
    					dp[i][j] = 0;
    			}
    		return dp[n][m];
    	}
    };
    

    参考链接

    leetcode

    blogs record our growth
  • 相关阅读:
    常见的排序算法
    322. Coin Change
    C++ STL中的lower_bound,upper_bound使用小结
    滑动窗口题汇总
    1658. Minimum Operations to Reduce X to Zero
    739. Daily Temperatures
    240. Search a 2D Matrix II
    474. Ones and Zeroes
    221. Maximal Square
    javac不是内部或外部命令
  • 原文地址:https://www.cnblogs.com/qwfand/p/12668633.html
Copyright © 2011-2022 走看看