zoukankan      html  css  js  c++  java
  • 回归模型效果评估系列2-MAE、MSE、RMSE、MAPE(MAPD)

      MAE、MSE、RMSE、MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧
     
     

    MAE(Mean Absolute Error) 平均绝对误差 

                                                   

        是基础的评估方法,后面的方法一般以此为参考对比优劣。

    MSE(Mean Square Error) 平均平方差

                                                 

        对比MAE,MSE可以放大预测偏差较大的值,可以比较不同预测模型的稳定性,应用场景相对多一点。

    RMSE(Root Mean Square Error) 方均根差

                                                

        因为使用的是平均误差,而平均误差对异常点较敏感,如果回归器对某个点的回归值很不合理,那么它的误差则比较大,从而会对RMSE的值有较大影响,即平均值是非鲁棒的。

        改进:使用误差的分位数来代替,如中位数来代替平均数。假设100个数,最大的数再怎么改变,中位数也不会变,因此其对异常点具有鲁棒性。

       平均平方差/均方误差是回归任务最常用的性能度量。

    MAPE (Mean Absolute Percentage Error, 也叫mean absolute percentage deviation (MAPD)

                                               

        MAPE不仅仅考虑预测值与真实值的误差,还考虑了误差与真实值之间的比例,在某些场景下,比如房价从0.5w到5w之间,0.5预测成1.0与5.0预测成4.5的差距是非常大的,在一些竞赛当中,MAPE也是常用的目标函数之一。

        在统计领域是一个预测准确性的衡量指标。

  • 相关阅读:
    时间选择器和日期选择器
    paip.c++ qt 项目工程互相引用的方法
    leetcode_question_85 Largest Rectangle in Histogram
    在VirtualBox虚拟机上采集Fedora15系统
    Oracle
    VC6.0调试大全
    oracle中的exists 和not exists 用法详解
    vi常用命令
    【虚拟化实战】容灾设计之四VPLEX
    CentOS6.3 安装配置 ant
  • 原文地址:https://www.cnblogs.com/qwj-sysu/p/8489323.html
Copyright © 2011-2022 走看看