zoukankan      html  css  js  c++  java
  • 三种方法实现MNIST 手写数字识别

    MNIST数据集下载:

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data 
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #one_hot 独热编码,也叫一位有效编码。在任意时候只有一位为1,其他位都是0

    1 使用逻辑回归:

    import tensorflow as tf
    
    # 导入数据集
    #from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    # 变量
    batch_size = 50
    
    #训练的x(image),y(label)
    # x = tf.Variable()
    # y = tf.Variable()
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    
    # 模型权重
    #[55000,784] * W = [55000,10]
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    # 用softmax构建逻辑回归模型
    pred = tf.nn.softmax(tf.matmul(x, W) + b)
    
    # 损失函数(交叉熵)
    cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), 1))
    
    # 低度下降
    optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
    
    # 初始化所有变量
    init = tf.global_variables_initializer()
    
    # 加载session图
    with tf.Session() as sess:
        sess.run(init)
    
        # 开始训练
        for epoch in range(25):
            avg_cost = 0.
            
            total_batch = int(mnist.train.num_examples/batch_size)
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                sess.run(optimizer, {x: batch_xs,y: batch_ys})
                #计算损失平均值
                avg_cost += sess.run(cost,{x: batch_xs,y: batch_ys}) / total_batch
            if (epoch+1) % 5 == 0:
                print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
    
        print("运行完成")
    
        # 测试求正确率
        correct = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
        print("正确率:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

    结果:

    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    Epoch: 0005 cost= 0.394426425
    Epoch: 0010 cost= 0.344705163
    Epoch: 0015 cost= 0.323814137
    Epoch: 0020 cost= 0.311426675
    Epoch: 0025 cost= 0.302971779
    运行完成
    正确率: 0.9188

    2 使用神经网络:

    import tensorflow as tf
    import numpy as np
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    def init_weights(shape):
        return tf.Variable(tf.random_normal(shape, stddev=0.01))
    
    
    def model(X, w_h, w_o):
        h = tf.nn.sigmoid(tf.matmul(X, w_h)) # this is a basic mlp, think 2 stacked logistic regressions
        return tf.matmul(h, w_o) # note that we dont take the softmax at the end because our cost fn does that for us
    
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
    
    X = tf.placeholder("float", [None, 784])
    Y = tf.placeholder("float", [None, 10])
    
    w_h = init_weights([784, 625]) # create symbolic variables
    w_o = init_weights([625, 10])
    
    py_x = model(X, w_h, w_o)
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # compute costs
    train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct an optimizer
    predict_op = tf.argmax(py_x, 1)
    
    # Launch the graph in a session
    with tf.Session() as sess:
        # you need to initialize all variables
        tf.global_variables_initializer().run()
    
        for i in range(100):
            for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
                sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
            print(i, np.mean(np.argmax(teY, axis=1) ==
                             sess.run(predict_op, feed_dict={X: teX})))

    结果:

    0 0.6898
    1 0.8244
    2 0.8635
    3 0.881
    4 0.8881
    5 0.8931
    6 0.8972
    7 0.9005
    8 0.9042
    9 0.9062

    3 使用卷积神经网络:

    import tensorflow as tf
    import numpy as np
    from tensorflow.examples.tutorials.mnist import input_data
    
    batch_size = 128
    test_size = 256
    
    def init_weights(shape):
        return tf.Variable(tf.random_normal(shape, stddev=0.01))
    
    def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
        l1a = tf.nn.relu(tf.nn.conv2d(X, w,                       # l1a shape=(?, 28, 28, 32)
                            strides=[1, 1, 1, 1], padding='SAME'))
        l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1],              # l1 shape=(?, 14, 14, 32)
                            strides=[1, 2, 2, 1], padding='SAME')
        l1 = tf.nn.dropout(l1, p_keep_conv)
    
        l2a = tf.nn.relu(tf.nn.conv2d(l1, w2,                     # l2a shape=(?, 14, 14, 64)
                            strides=[1, 1, 1, 1], padding='SAME'))
        l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1],              # l2 shape=(?, 7, 7, 64)
                            strides=[1, 2, 2, 1], padding='SAME')
        l2 = tf.nn.dropout(l2, p_keep_conv)
    
        l3a = tf.nn.relu(tf.nn.conv2d(l2, w3,                     # l3a shape=(?, 7, 7, 128)
                            strides=[1, 1, 1, 1], padding='SAME'))
        l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1],              # l3 shape=(?, 4, 4, 128)
                            strides=[1, 2, 2, 1], padding='SAME')
        l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]])    # reshape to (?, 2048)
        l3 = tf.nn.dropout(l3, p_keep_conv)
    
        l4 = tf.nn.relu(tf.matmul(l3, w4))
        l4 = tf.nn.dropout(l4, p_keep_hidden)
    
        pyx = tf.matmul(l4, w_o)
        return pyx
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
    trX = trX.reshape(-1, 28, 28, 1)  # 28x28x1 input img
    teX = teX.reshape(-1, 28, 28, 1)  # 28x28x1 input img
    
    
    X = tf.placeholder("float", [None, 28, 28, 1])
    Y = tf.placeholder("float", [None, 10])
    
    w = init_weights([3, 3, 1, 32])       # 3x3x1 conv, 32 outputs
    w2 = init_weights([3, 3, 32, 64])     # 3x3x32 conv, 64 outputs
    w3 = init_weights([3, 3, 64, 128])    # 3x3x32 conv, 128 outputs
    w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs
    w_o = init_weights([625, 10])         # FC 625 inputs, 10 outputs (labels)
    
    p_keep_conv = tf.placeholder("float")
    p_keep_hidden = tf.placeholder("float")
    py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)
    
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
    train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
    predict_op = tf.argmax(py_x, 1)
    
    # Launch the graph in a session
    with tf.Session() as sess:
        # you need to initialize all variables
        tf.global_variables_initializer().run()
    
        for i in range(10):
            training_batch = zip(range(0, len(trX), batch_size),
                                 range(batch_size, len(trX)+1, batch_size))
            for start, end in training_batch:
                sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
                                              p_keep_conv: 0.8, p_keep_hidden: 0.5})
    
            test_indices = np.arange(len(teX)) # Get A Test Batch
            np.random.shuffle(test_indices)
            test_indices = test_indices[0:test_size]
    
            print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
                             sess.run(predict_op, feed_dict={X: teX[test_indices],
                                                             Y: teY[test_indices],
                                                             p_keep_conv: 1.0,
                                                             p_keep_hidden: 1.0})))

    结果:

    0 0.9453125
    1 0.9765625
    2 0.9921875
    3 0.98828125
    4 0.984375
    5 0.9921875
    6 0.984375
    7 0.9921875
    8 0.98828125
    9 0.99609375
  • 相关阅读:
    小毛病,大问题
    [zz]Libvirt 虚拟化库剖析
    libvirt XML 学习笔记
    Ubuntu 10.04下使用 libvirt 创建KVM虚拟机
    [zz]使用libvirt管理kvm虚拟机(更新中)
    [zz]LXC:Linux 容器工具
    一些比较好的URL
    [zz]Libvirt XML学习笔记
    [zz]一些KVM xml 例子
    [zz]kvm环境使用libvirt创建虚拟机
  • 原文地址:https://www.cnblogs.com/raincute/p/8759167.html
Copyright © 2011-2022 走看看