zoukankan      html  css  js  c++  java
  • Solution 「POI 2011」「洛谷 P3527」METMeteors

    \(\mathcal{Description}\)

      Link.

      给定一个大小为 \(n\) 的环,每个结点有一个所属国家。\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上一个值。对于每个国家,求操作多少次事件后其拥有的结点权值总和不小于给定值。

      \(n,k\le3\times10^5\)

    \(\mathcal{Soltuion}\)

      新初二大佬切掉的题兔子都不会 qwq。

      于是补习了一下整体二分。

      考虑一个单点的情况,显然二分,不过每个点单独二分答案的复杂度是不能接受的。我们考虑“整体二分”——把一段点的答案一起二分。具体地,设当前处理询问(此后会打乱国家顺序,所以说“询问”会更准确)区间 \([q_l,q_r]\),已知答案区间 \([a_l,a_r]\),取出答案终点 \(mid=\lfloor\frac{a_l+a_r}2\rfloor\),在树状数组上作用 \([a_l,mid]\) 内的所有事件。把此时满足“不小于给定值”的询问放到左边,其余放到右边并将其要求的值减去当前这些事件的贡献,最后还原树状数组,递归处理两端询问区间即可。

      复杂度 \(\mathcal O(n\log n\log k)\)

    \(\mathcal{Code}\)

    #include <cstdio>
    #include <vector>
    
    typedef long long LL;
    
    const int MAXN = 3e5;
    int n, m, K, L[MAXN + 5], R[MAXN + 5], A[MAXN + 5], ans[MAXN + 5];
    std::vector<int> station[MAXN + 5];
    LL bit[MAXN * 2 + 5];
    
    struct Country { int expt, id; } qry[MAXN + 5], tqry[MAXN * 2 + 5];
    
    inline int rint () {
    	int x = 0; char s = getchar ();
    	for ( ; s < '0' || '9' < s; s = getchar () );
    	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
    	return x;
    }
    
    inline int lowbit ( const int x ) { return x & -x; }
    
    inline void update ( int x, const int k ) { for ( ; x <= m << 1; x += lowbit ( x ) ) bit[x] += k; }
    
    inline LL sum ( int x ) { LL ret = 0; for ( ; x; x -= lowbit ( x ) ) ret += bit[x]; return ret; }
    
    inline void solve ( const int ql, const int qr, const int al, const int ar ) {
    	if ( al == ar ) {
    		for ( int i = ql; i <= qr; ++ i ) ans[qry[i].id] = al;
    		return ;
    	}
    	int mid = al + ar >> 1, inL = 0, inR = n;
    	for ( int i = al; i <= mid; ++ i ) update ( L[i], A[i] ), update ( R[i] + 1, -A[i] );
    	for ( int i = ql; i <= qr; ++ i ) {
    		LL curs = 0;
    		for ( int st: station[qry[i].id] ) {
    			curs += sum ( st ) + sum ( st + m );
    			if ( curs >= qry[i].expt ) break;
    		}
    		if ( curs >= qry[i].expt ) tqry[++ inL] = qry[i];
    		else qry[i].expt -= curs, tqry[++ inR] = qry[i];
    	}
    	for ( int i = al; i <= mid; ++ i ) update ( L[i], -A[i] ), update ( R[i] + 1, A[i] );
    	for ( int i = 1; i <= inL; ++ i ) qry[ql + i - 1] = tqry[i];
    	for ( int i = 1; i <= inR - n; ++ i ) qry[ql + inL + i - 1] = tqry[n + i];
    	solve ( ql, ql + inL - 1, al, mid ), solve ( qr - inR + n + 1, qr, mid + 1, ar );
    }
    
    int main () {
    	n = rint (), m = rint ();
    	for ( int i = 1; i <= m; ++ i ) station[rint ()].push_back ( i );
    	for ( int i = 1; i <= n; ++ i ) qry[i].expt = rint (), qry[i].id = i;
    	K = rint ();
    	for ( int i = 1; i <= K; ++ i ) {
    		L[i] = rint (), R[i] = rint (), A[i] = rint ();
    		if ( R[i] < L[i] ) R[i] += m;
    	}
    	solve ( 1, n, 1, K + 1 );
    	for ( int i = 1; i <= n; ++ i ) {
    		if ( ans[i] == K + 1 ) puts ( "NIE" );
    		else printf ( "%d\n", ans[i] );
    	}
    	return 0;
    }
    
  • 相关阅读:
    bash脚本编程之数组和字符串处理
    Linux启动流程简介以及各启动阶段失败的恢复方法
    Linux路由表的重要性以及配置
    Linux终端和伪终端简述
    Linux九阴真经之无影剑残卷9(Shell脚本编程进阶)
    Linux九阴真经之无影剑残卷8(计划任务)
    Linux九阴真经之无影剑残卷7(进程管理)
    Linux九阴真经之无影剑残卷5(Linux静态路由的实现)
    Linux九阴真经之无影剑残卷4(创建虚拟内存--swap)
    Linux九阴真经之无影剑残卷3(将home目录搬到新分区)
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13402077.html
Copyright © 2011-2022 走看看