zoukankan      html  css  js  c++  java
  • Solution -「NOI 2008」「洛谷 P3980」志愿者招募

    (mathcal{Description})

      Link.

      一项持续 (n) 天的任务,第 (i) 天需要至少 (a_i) 人工作。还有 (m) 种雇佣方式,第 (i) 种每雇佣一人代价为 (c_i),此人会从第 (s_i) 天工作到第 (t_i) 天(包括边界)。求满足条件的最小代价和。

      (nle10^3)(mle10^4)

    (mathcal{Solution})

      非常巧妙地题意转化。

      初始时刻,有 (+infty) 人待业,限制第 (i) 天至多 (+infty-a_i) 人待业(那么至少就有 (a_i) 人上工)。雇佣一个人相当于用 (c_i) 的费用让一个人从 (s_i) 天起上工,到 (t_i+1) 天恢复待业状态。所以最小费用最大流建图为:

    • (i ightarrow i+1),流量 (+infty-a_i),费用为 (0)
    • (s_i ightarrow t_i+1)(建一个虚点 (T=n+1)),流量 (+infty),费用 (c_i)

      跑最小费用最大流即可。复杂度 (mathcal O(operatorname{Dinic}(n,n+m)))

    (mathcal{Code})

    /* Clearink */
    
    #include <queue>
    #include <cstdio>
    
    typedef long long LL;
    typedef std::pair<LL, LL> PLL;
    
    const int MAXN = 1e3, MAXM = 1e4;
    const LL INF = 1ll << 60;
    int n, m;
    
    inline LL imin ( const LL a, const LL b ) { return a < b ? a : b; }
    
    // 这个 MFCG 其实是错的,SPFA d[i] 应初始化为 INF 而非 -1.
    struct MaxFlowCostGraph {
    	static const int MAXND = MAXN + 2, MAXEG = MAXN + MAXM + 1;
    	int ecnt, head[MAXND + 5], S, T, bound, curh[MAXND + 5];
    	LL d[MAXND + 5];
    	bool inq[MAXND + 5];
    	struct Edge { int to; LL flw; int cst, nxt; } graph[MAXEG * 2 + 5];
    
    	MaxFlowCostGraph (): ecnt ( 1 ) {}
    
    	inline void link ( const int s, const int t, const LL f, const int w ) {
    		graph[++ecnt] = { t, f, w, head[s] };
    		head[s] = ecnt;
    	}
    
    	inline Edge& operator [] ( const int k ) { return graph[k]; }
    
    	inline void operator () ( const int s, const int t, const LL f, const int w ) {
    		#ifdef RYBY
    			printf ( "%d %d ", s, t );
    			if ( f == INF ) printf ( "INF " );
    			else printf ( "%lld ", f );
    			printf ( "%d
    ", w );
    		#endif
    		link ( s, t, f, w ), link ( t, s, 0, -w );
    	}
    
    	inline bool spfa () {
    		static std::queue<int> que;
    		for ( int i = 0; i <= bound; ++i ) d[i] = -1, inq[i] = false;
    		d[S] = 0, inq[S] = true, que.push ( S );
    		while ( !que.empty () ) {
    			int u = que.front (); que.pop ();
    			inq[u] = false;
    			for ( int i = head[u], v; i; i = graph[i].nxt ) {
    				if ( graph[i].flw
    				&& ( !~d[v = graph[i].to] || d[v] > d[u] + graph[i].cst ) ) {
    					d[v] = d[u] + graph[i].cst;
    					if ( !inq[v] ) que.push ( v ), inq[v] = true;
    				}
    			}
    		}
    		return ~d[T];
    	}
    
    	inline PLL dfs ( const int u, const LL iflw ) {
    		if ( u == T ) return { iflw, 0 };
    		inq[u] = true; PLL ret ( 0, 0 );
    		for ( int& i = curh[u], v; i; i = graph[i].nxt ) {
    			if ( graph[i].flw && !inq[v = graph[i].to]
    			&& d[v] == d[u] + graph[i].cst ) {
    				PLL oflw ( dfs ( v, imin ( iflw - ret.first, graph[i].flw ) ) );
    				graph[i].flw -= oflw.first, graph[i ^ 1].flw += oflw.first;
    				ret.first += oflw.first;
    				ret.second += graph[i].cst * oflw.first + oflw.second;
    				if ( ret.first == iflw ) break;
    			}
    		}
    		if ( !ret.first ) d[u] = -1;
    		return inq[u] = false, ret;
    	}
    
    	inline PLL calc ( const int s, const int t ) {
    		S = s, T = t;
    		PLL ret ( 0, 0 );
    		while ( spfa () ) {
    			for ( int i = 0; i <= bound; ++i ) inq[i] = false, curh[i] = head[i];
    			PLL tmp ( dfs ( S, INF ) );
    			ret.first += tmp.first, ret.second += tmp.second;
    		}
    		return ret;
    	}
    } graph;
    
    int main () {
    	scanf ( "%d %d", &n, &m );
    	int S = 0, T = graph.bound = n + 1;
    	graph ( S, 1, INF, 0 );
    	for ( int i = 1, a; i <= n; ++i ) {
    		scanf ( "%d", &a );
    		graph ( i, i + 1, INF - a, 0 );
    	}
    	for ( int i = 1, s, t, c; i <= m; ++i ) {
    		scanf ( "%d %d %d", &s, &t, &c );
    		graph ( s, t + 1, INF, c );
    	}
    	printf ( "%lld
    ", graph.calc ( S, T ).second );
    	return 0;
    }
    
    
  • 相关阅读:
    搜索引擎代码资源
    shell十三问(很不错的shell解释)
    Export/Import 使用技巧与常见错误
    利用java实现数据结构中常用的插入排序和快速排序算法
    java23种设计模式与追MM
    sqlldr使用小结(zt)
    排序算法的java实现的网址链接
    Rdesktop与Window相联
    java抽取word,pdf的四种武器
    常用数据库JDBC连接写法
  • 原文地址:https://www.cnblogs.com/rainybunny/p/14253525.html
Copyright © 2011-2022 走看看