zoukankan      html  css  js  c++  java
  • Solution -「NOI 2016」「洛谷 P1587」循环之美

    (mathcal{Description})

      Link.

      给定 (n,m,k),求 (xin [1,n]capmathbb N,yin [1,m]cap mathbb N),且最简分数 (frac{x}{y})(k) 进制下是纯循环小数(包括整数)的 ((x,y)) 数量。

      (n,mle10^9)(kle2 imes10^3)

    (mathcal{Solution})

      当你举几个十进制的纯循环小数就不难发现规律了。(

      考虑一个已有 (xperp y)(frac{x}y),假设它是 (k) 进制下的纯循环小数,且循环节长度为 (l)。记 ({x}) 表示 (x) 的小数部分值,那么有

    [left{frac{xk^l}{y} ight}=left{frac{x}{y} ight}\Leftrightarrow~~~~frac{xk^l}{y}-leftlfloorfrac{xk^l}{y} ight floor=frac{x}{y}-leftlfloorfrac{x}{y} ight floor\Leftrightarrow~~~~xk^l-yleftlfloorfrac{xk^l}{y} ight floor=x-yleftlfloorfrac{x}{y} ight floor\Leftrightarrow~~~~xk^lequiv xpmod y\Leftrightarrow~~~~kperp y ]

    所以题目就是要求

    [sum_{i=1}^msum_{j=1}^n[iperp j][iperp k] ]


      略微推一下式子嘛:

    [egin{aligned}sum_{i=1}^msum_{j=1}^n[iperp j][iperp k]&=sum_{i=1}^m[iperp k]sum_{j=1}^nsum_{dmid i,dmid j}mu(d)\&=sum_{d=1}^{min{n,m}}[dperp k]mu(d)sum_{i=1}^{lfloorfrac{m}{d} floor}[iperp k]lfloorfrac{n}{d} floor\&=sum_{d=1}^{min{n,m}}[dperp k]mu(d)lfloorfrac{n}{d} floorsum_{i=1}^{lfloorfrac{m}{d} floor}[iperp k]end{aligned} ]

    套上整除分块,分别研究两个求和,令

    [f(n)=sum_{i=1}^n[iperp k]\g(n,k)=sum_{i=1}^n[iperp k]mu(i) ]

    快速解决它们,就能整除分块啦。

      先考虑 (f),显然的事实是 ([iperp k]=[(imod k)perp k]),继而有

    [f(n)=lfloorfrac{n}{k} floor f(n)+f(nmod k) ]

    注意到 (k) 很小,(mathcal O(k)) 预处理之后就能 (mathcal O(1))(f) 了。

      对于 (g) 而言,([iperp k]) 还能继续莫反——

    [egin{aligned}g(n,k)&=sum_{i=1}^n[iperp k]mu(i)\&=sum_{i=1}^nmu(i)sum_{dmid i,dmid k}mu(k)\&=sum_{dmid k}mu(d)sum_{i=1}^{lfloorfrac{n}{d} floor}mu(id)\&=sum_{dmid k}mu(d)sum_{i=1}^{lfloorfrac{n}{d} floor}[iperp d]mu(id)~~~~*\&=sum_{dmid k}(mu(d))^2g(lfloorfrac{n}{d} floor,d)end{aligned} ]

    其中,标注 (*) 的步骤同时利用 (mu) 自身和积性函数普遍的性质进行“无用”转化,巧妙地完成了递推式。直接记忆化计算上式 就可以在可观的复杂度内求出 (g) 了,特别地,当 (k=1),需要用杜教筛求 (mu) 的前缀和。

      复杂度据说是 (mathcal O(sigma_0(k)n^{frac{1}2}+n^{frac{2}3}))

    (mathcal{Code})

    /* Clearink */
    
    #include <cmath>
    #include <cstdio>
    #include <unordered_map>
    
    #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
    #define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
    
    typedef long long LL;
    
    const int MAXK = 2e3, MAXS = 1e7;
    int n, m, K, pn, pr[MAXS + 5];
    bool vis[MAXS + 5];
    int f[MAXK + 5], mu[MAXS + 5], mus[MAXS + 5];
    
    inline int imin( const int a, const int b ) { return a < b ? a : b; }
    inline int gcd( const int a, const int b ) { return b ? gcd( b, a % b ) : a; }
    
    inline LL calcF( const int n ) {
    	return ( n / K ) * f[K] + f[n % K];
    }
    
    inline void sieve() {
    	mu[1] = mus[1] = 1;
    	rep ( i, 2, MAXS ) {
    		if ( !vis[i] ) mu[pr[++pn] = i] = -1;
    		for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= MAXS; ++j ) {
    			vis[t] = true;
    			if ( !( i % pr[j] ) ) break;
    			mu[t] = -mu[i];
    		}
    		mus[i] = mu[i] + mus[i - 1];
    	}
    }
    
    inline int calcM( const int n ) {
    	static std::unordered_map<int, int> mem;
    
    	if ( n <= MAXS ) return mus[n];
    	if ( mem.count( n ) ) return mem[n];
    
    	int ret = 1;
    	for ( int l = 2, r; l <= n; l = r + 1 ) {
    		r = n / ( n / l );
    		ret -= ( r - l + 1 ) * calcM( n / l );
    	}
    	return mem[n] = ret;
    }
    
    inline LL calcS( const int n, const int k ) {
    	static std::unordered_map<LL, LL> mem;
    
    	if ( !n ) return 0;
    	if ( k == 1 ) return calcM( n );
    	LL h = n * 2012ll + k;
    	if ( mem.count( h ) ) return mem[h];
    
    	LL ret = 0;
    	rep ( i, 1, sqrt( 1. * k ) ) if ( !( k % i ) ) {
    		ret += mu[i] * mu[i] * calcS( n / i, i );
    		if ( i * i != k ) {
    			ret += mu[k / i] * mu[k / i] * calcS( n / ( k / i ), k / i );
    		}
    	}
    	return mem[h] = ret;
    }
    
    int main() {
    	// freopen( "cyclic.in", "r", stdin );
    	// freopen( "cyclic.out", "w", stdout );
    
    	scanf( "%d %d %d", &n, &m, &K );
    	
    	sieve();
    	rep ( i, 1, K ) f[i] = f[i - 1] + ( gcd( i, K ) == 1 );
    
    	LL ans = 0;
    	for ( int l = 1, r, t = imin( n, m ); l <= t; l = r + 1 ) {
    		r = imin( n / ( n / l ), m / ( m / l ) );
    		ans += ( calcS( r, K ) - calcS( l - 1, K ) )
    			* ( n / l ) * calcF( m / l );
    	}
    
    	printf( "%lld
    ", ans );
    	return 0;
    }
    
    
  • 相关阅读:
    angularJS(5)
    angularJS(4)
    angularJS(3)
    AngularJS(1)
    angularJS(2)
    关于响应式布局
    PHP+JQUEY+AJAX实现分页【转】
    bootscript/javascript组件
    你必须收藏的Github技巧
    关于php的一些小知识!
  • 原文地址:https://www.cnblogs.com/rainybunny/p/14780523.html
Copyright © 2011-2022 走看看