zoukankan      html  css  js  c++  java
  • Solution -「多校联训」最大面积

    (mathcal{Description})

      Link.

      平面上有 (n) 个点 (A_{1..n})(q) 次询问,每次给出点 (P),求

    [max_{1le lle rle n}left{sum_{i=l}^r vec{OP} imesvec{OA_i} ight}. ]

      (nle10^5)(qle10^6)

    (mathcal{Solution})

      初步转化一下式子:

    [egin{aligned} sum_{i=l}^rvec{OP} imesvec{OA_i}&=sum_{i=l}^r(x_Py_{A_i}-y_Px_{A_i})\ &=x_Pleft(sum_{i=l}^ry_{A_i}-frac{y_P}{x_P}sum_{i=l}^rx_{A_i} ight)~~~~(x_P ot=0) end{aligned} ]

    对于 (x_P=0) 即求 (x_{A_{1..n}}) 的最大子段和;对于 (x_P ot=0),提出 (x_P) 后,记 (k=frac{y_P}{x_P})(y(l,r)=sum_{i=l}^ry_{A_i})(x(l,r)=sum_{i=l}^rx_{A_i}),原式可以看作

    [y(l,r)-kx(l,r)=b, ]

    并要求最大化 (x_Pb)。相当于过某个 ((x(l,r),y(l,r))) 作斜率为 (k) 的直线,求其最大或最小纵截距。若能求出所有 ((x(l,r),y(l,r))) 构成的凸包,就能在凸壳上二分求解了。

      考虑求凸包的方法:分治,对于分支区间 ([l,r]) 与其中点 (p),计算 ((x(l..p,p+1..r),y(l..p,p+1..r))) 的贡献。分别求出后缀与前缀凸包,根据定义,求出左右凸包的 Minkowski 和即为当前层贡献,加入总点集,最后再求总点集的凸包即可。

      复杂度 (mathcal O(nlog^2n+qlog n))

    (mathcal{Code})

    /* Rainybunny */
    
    #include <cstdio>
    #include <vector>
    #include <algorithm>
    
    #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
    #define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
    
    typedef long long LL;
    typedef long double LD;
    
    inline int rint() {
        int x = 0, f = 1, s = getchar();
        for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
        for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
        return x * f;
    }
    
    template<typename Tp>
    inline void wint( Tp x ) {
        if ( x < 0 ) putchar( '-' ), x = -x;
        if ( 9 < x ) wint( x / 10 );
        putchar( x % 10 ^ '0' );
    }
    
    inline LL lmax( const LL a, const LL b ) { return a < b ? b : a; }
    
    namespace PGP {
    
    const LD EPS = 1e-9;
    
    inline int dcmp( const LD a ) {
        return -EPS < a && a < EPS ? 0 : a < 0 ? -1 : 1;
    }
    
    struct Point {
        LL x, y;
        Point(): x( 0 ), y( 0 ) {}
        Point( const LL a, const LL b ): x( a ), y( b ) {}
        inline Point operator + ( const Point& p ) const {
            return { x + p.x, y + p.y };
        }
        inline Point operator - ( const Point& p ) const {
            return { x - p.x, y - p.y };
        }
        inline int operator ^ ( const Point& p ) const {
            return dcmp( LD( x ) * p.y - LD( y ) * p.x );
        }
        inline bool operator < ( const Point& p ) const {
            return x != p.x ? x < p.x : y < p.y;
        }
        inline bool operator == ( const Point& p ) const {
            return x == p.x && y == p.y;
        }
    };
    typedef Point Vector;
    typedef std::vector<Point> Convex;
    
    inline Convex getConvex( std::vector<Point> vec ) {
        static Convex ret; ret.clear();
        std::sort( vec.begin(), vec.end() );
        vec.resize( std::unique( vec.begin(), vec.end() ) - vec.begin() );
        int n = int( vec.size() ), top = 0;
        ret.resize( n << 1 );
        rep ( i, 0, n - 1 ) {
            for ( ; top > 1; --top ) {
                if ( ( ( ret[top - 1] - ret[top - 2] )
                  ^ ( vec[i] - ret[top - 2] ) ) > 0 ) break;
            }
            ret[top++] = vec[i];
        }
        for ( int tmp = top, i = n - 2; ~i; --i ) {
            for ( ; top > tmp; --top ) {
                if ( ( ( ret[top - 1] - ret[top - 2] )
                  ^ ( vec[i] - ret[top - 2] ) ) > 0 ) break;
            }
            ret[top++] = vec[i];
        }
        top -= n > 1;
        return ret.resize( top ), ret;
    }
    
    inline int findPole( const Convex& cvx ) {
        int ret = -1, n = int( cvx.size() );
        rep ( i, 0, n - 1 ) {
            if ( !~ret || cvx[ret].y > cvx[i].y
              || ( cvx[ret].y == cvx[i].y && cvx[ret].x > cvx[i].x ) ) {
                ret = i;
            }
        }
        return ret;
    }
    
    inline void poleSort( Convex& cvx ) {
        int pid = findPole( cvx ), n = int( cvx.size() );
        pid = n - pid - 1;
        std::reverse( cvx.begin(), cvx.end() );
        std::reverse( cvx.begin(), cvx.begin() + pid + 1 );
        std::reverse( cvx.begin() + pid + 1, cvx.end() );
    }
    
    inline Convex minkowskiSum( Convex A, Convex B ) {
        static Convex ret; ret.clear();
        poleSort( A ), poleSort( B );
        int n = int( A.size() ), m = int( B.size() );
        
        Point ap( A[0] ), bp( B[0] );
        ret.push_back( ap + bp );
        rep ( i, 0, n - 2 ) A[i] = A[i + 1] - A[i];
        A[n - 1] = ap - A[n - 1];
        rep ( i, 0, m - 2 ) B[i] = B[i + 1] - B[i];
        B[m - 1] = bp - B[m - 1];
        
        int i = 0, j = 0;
        while ( i < n && j < m ) {
            // 注意这里能 hack,应该计算极角来比较,否则无法正确处理共线向量。
            ret.push_back( ret.back()
              + ( ( A[i] ^ B[j] ) > 0 ? A[i++] : B[j++] ) );
        }
        while ( i < n ) ret.push_back( ret.back() + A[i++] );
        while ( j < m ) ret.push_back( ret.back() + B[j++] );
        return ret;
    }
    
    } using namespace PGP;
    
    const int MAXN = 1e5;
    int n, q, rpos;
    Point A[MAXN + 5];
    Convex cvxA;
    LL mnsec, mxsec;
    
    inline void buildConvex( const int l, const int r ) {
        if ( l == r ) return cvxA.push_back( A[l] );
        int mid = l + r >> 1;
        buildConvex( l, mid ), buildConvex( mid + 1, r );
    
        static Convex cvxL, cvxR; cvxL.clear(), cvxR.clear();
        Point cur;
        per ( i, mid, l ) cvxL.push_back( cur = cur + A[i] );
        cur = Point();
        rep ( i, mid + 1, r ) cvxR.push_back( cur = cur + A[i] );
        
        cvxL = minkowskiSum( getConvex( cvxL ), getConvex( cvxR ) );
        for ( const auto& p: cvxL ) cvxA.push_back( p );
    }
    
    inline void init() {
        buildConvex( 1, n ), cvxA = getConvex( cvxA );
    
        #ifdef RYBY
            puts( "+++ cvxA +++" );
            for ( auto p: cvxA ) printf( "%lld %lld
    ", p.x, p.y );
            puts( "--- cvxA ---" );
        #endif
    
        if ( cvxA.size() == 1 ) rpos = 0;
        else {
            rpos = -1;
            rep ( i, 1, cvxA.size() - 1 ) {
                if ( cvxA[i].x <= cvxA[i - 1].x ) {
                    rpos = i - 1; break;
                }
            }
            if ( !~rpos ) rpos = cvxA.size() - 1;
        }
    
        LL las = 0;
        rep ( i, 1, n ) {
            if ( ( las += A[i].x ) > mxsec ) mxsec = las;
            if ( las < 0 ) las = 0;
        }
        las = 0;
        rep ( i, 1, n ) {
            if ( ( las += A[i].x ) < mnsec ) mnsec = las;
            if ( las > 0 ) las = 0;
        }
    }
    
    inline LL solve( const Point& P ) {
        if ( !P.x ) return P.y > 0 ? -P.y * mnsec : -P.y * mxsec;
        if ( cvxA.size() == 1 ) return P ^ cvxA[0];
        Vector kp( P.x, P.y );
        if ( kp.x < 0 ) kp.x = -kp.x, kp.y = -kp.y;
    
        int s = int( cvxA.size() );
        if ( P.x > 0 ) { // up convex.
            int l = rpos, r = s;
            while ( l < r ) {
                int mid = l + r >> 1;
                if ( ( ( cvxA[mid] - cvxA[( mid + 1 ) % s] ) ^ kp ) > 0 )
                    l = mid + 1;
                else r = mid;
            }
            l %= s;
            return P.x * cvxA[l].y - P.y * cvxA[l].x;
        } else { // down convex.
            int l = 0, r = rpos;
            while ( l < r ) {
                int mid = l + r >> 1;
                if ( ( ( cvxA[( mid + 1 ) % s] - cvxA[mid] ) ^ kp ) > 0 ) 
                    l = mid + 1;
                else r = mid;
            }
            l %= s;
            return P.x * cvxA[l].y - P.y * cvxA[l].x;
        }
    }
    
    int main() {
        freopen( "area.in", "r", stdin );
        freopen( "area.out", "w", stdout );
    
        n = rint(), q = rint();
        rep ( i, 1, n ) A[i].x = rint(), A[i].y = rint();
    
        init();
    
        for ( Point P; q--; ) {
            P.x = rint(), P.y = rint();
            wint( lmax( solve( P ), 0 ) ), putchar( '
    ' );
        }
        return 0;
    }
    
    
  • 相关阅读:
    介绍一个axios调试好用的工具:axios-mock-adapter
    Promise使用时应注意的问题
    如何把js的代码写的更加容易维护(一)--面向对象编程
    一个简单的javascript节流器实现
    使用gulp和bable实现实时编译ES6代码
    javascript闭包的使用--按钮切换
    js求数组的最大值--奇技淫巧和笨方法
    Canvas绘图优化之使用位图--基于createjs库
    通过chrome浏览器分析网页加载时间
    阿里云ECS服务器折腾记(一):小白入门遇到的各类问题
  • 原文地址:https://www.cnblogs.com/rainybunny/p/14932429.html
Copyright © 2011-2022 走看看