zoukankan      html  css  js  c++  java
  • Solution -「UNR #5」「UOJ #671」诡异操作

    (mathcal{Desciprtion})

      Link.

      给定序列 ({a_n}),支持 (q) 次操作:

    1. 给定 (l,r,v)(forall iin[l,r],~a_ileftarrowlfloorfrac{a_i}{v} floor)
    2. 给定 (l,r,v)(forall iin[l,r],~a_ileftarrow a_iotimes v),其中 (otimes) 表示二进制按位与;
    3. 给定 (l,r),求 (sum_{i=l}^ra_i)

      (nle3 imes10^5)​,(qle2 imes10^5)​,值域 (V<2^{128})​,答案对 __uint128_t 自然溢出。

    (mathcal{Solution})

      写个“暴力”,证明复杂度,得到正解√

      不考虑 (1) 操作,想想如何支持区间与-区间求和。我们用一棵线段树来维护,对于一个长为 (s) 的区间,维护一个表格 (S_{0..log s}),设某个 bit (x) 在该区间中出现了 (c) 次,则在 (S) 中每个 (c) 的 bit 处加上 (x) 的贡献。可以发现 (sum S_i2^i) 就是区间和,合并类似高精度加法做到 (mathcal O(s)),而区间与直接在令 (S_ileftarrow S_iotimes v) 即可解决,也是 (mathcal O(s))。不失为一种奇怪的小 trick√

      取整除,自然而然暴力做。那么至多遍历 (omega=log V) 次线段树,乘上 (mathcal O(s))(s) 为区间长度)的上传代价,遍历整棵树的上传代价和式 (T(n)=2T(n/2)+log n=mathcal O(n)),所以总复杂度 (mathcal O(omega n)),加上区间与和求答案,最终复杂度 (mathcal O(qlog^2n+omega n))

    (mathcal{Code})

      用 template 实现线段树√

    /*~Rainybunny~*/
    
    #include <set>
    #include <cmath>
    #include <cstdio>
    #include <cassert>
    #include <cstring>
    
    #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
    #define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
    
    typedef __uint128_t UI;
    
    inline UI rxint() {
        static char buf[100]; scanf( "%s", buf );
        UI ret = 0;
        for ( int i = 0; buf[i]; ++i ) {
            ret = ret << 4 | ( buf[i] <= '9' ? buf[i] ^ '0' : buf[i] - 'a' + 10 );
        }
        return ret;
    }
    
    inline int rdint() {
    	int x = 0, f = 1, s = getchar();
    	for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
    	for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
    	return x * f;
    }
    
    inline void wxint( const UI x ) {
        if ( x >= 16 ) wxint( x >> 4 );
        putchar( ( x & 15 ) >= 10 ? 'a' + ( x & 15 ) - 10 : '0' ^ ( x & 15 ) );
    }
    
    inline int imax( const int a, const int b ) { return a < b ? b : a; }
    
    const int MAXN = 3e5, MAXQ = 2e5;
    int n, q;
    
    template<const int H>
    struct Atom {
    	UI val[H + 1];
    	
    	inline UI& operator [] ( const int k ) { return val[k]; }
    	
    	friend inline Atom<H + 1> operator + ( Atom<H>& u, Atom<H>& v ) {
    		static Atom<H + 1> ret;
    		ret[0] = u[0] ^ v[0]; UI up = u[0] & v[0];
    		rep ( i, 1, H ) {
    			ret[i] = up ^ u[i] ^ v[i];
    			up = ( up & u[i] ) | ( up & v[i] ) | ( u[i] & v[i] );
    		}
    		ret[H + 1] = up;
    		return ret;
    	}
    	
    	inline Atom& operator &= ( const UI& x ) {
    		rep ( i, 0, H ) val[i] &= x;
    		return *this;
    	}
    	
    	inline UI get() const {
    		UI ret = 0;
    		rep ( i, 0, H ) ret += val[i] << i;
    		return ret;
    	}
    };
    
    template<const int H>
    struct SegmentTree {
    	Atom<H> sum; bool zero; UI tag;
    	SegmentTree<H - 1> lch, rch;
    	
    	inline void pushup() {
    		sum = lch.sum + rch.sum, zero = lch.zero && rch.zero;
    	}
    	
    	inline void pushan( const UI& v ) {
    		tag &= v, sum &= v;
    	}
    	
    	inline void pushdn() {
    		if ( ~tag ) {
    			lch.pushan( tag ), rch.pushan( tag );
    			tag = ~UI( 0 );
    		}
    	}
    	
    	inline void build( const int l, const int r ) {
    		int mid = l + r >> 1; tag = ~UI( 0 );
    		lch.build( l, mid ), rch.build( mid + 1, r );
    		pushup();
    	}
    	
    	inline void secAnd( const int l, const int r,
    	  const int ql, const int qr, const UI& v ) {
    		if ( zero ) return ;
    		if ( ql <= l && r <= qr ) return void( pushan( v ) );
    		int mid = l + r >> 1; pushdn();
    		if ( ql <= mid ) lch.secAnd( l, mid, ql, qr, v );
    		if ( mid < qr ) rch.secAnd( mid + 1, r, ql, qr, v );
    		pushup();
    	}
    	
    	inline void secDiv( const int l, const int r,
    	  const int ql, const int qr, const UI& v ) {
    		if ( zero || v == 1 ) return ;
    		if ( l == r ) return void( zero = !( sum[0] /= v ) );
    		int mid = l + r >> 1; pushdn();
    		if ( ql <= mid ) lch.secDiv( l, mid, ql, qr, v );
    		if ( mid < qr ) rch.secDiv( mid + 1, r, ql, qr, v );
    		pushup();
    	}
    	
    	inline UI query( const int l, const int r, const int ql, const int qr ) {
    	  	if ( zero ) return 0;
    		if ( ql <= l && r <= qr ) return sum.get();
    		int mid = l + r >> 1; UI ret = 0; pushdn();
    		if ( ql <= mid ) ret += lch.query( l, mid, ql, qr );
    		if ( mid < qr ) ret += rch.query( mid + 1, r, ql, qr );
    		return ret;
    	}
    };
    
    template<>
    struct SegmentTree<0> {
    	Atom<0> sum; bool zero; UI tag;
    	
    	inline void pushan( const UI& v ) { tag &= v, sum &= v; }
    	
    	inline void build( const int l, const int r ) {
    		assert( l == r );
    		tag = ~UI( 0 ), zero = !( sum[0] = r < n ? rxint() : 0 );
    	}
    	
    	inline void secAnd( const int l, const int r,
    	  const int ql, const int qr, const UI& v ) {
    		if ( zero ) return ;
    		assert( ql <= l && r <= qr ), pushan( v );
    	}
    	
    	inline void secDiv( const int l, const int r,
    	  const int ql, const int qr, const UI& v ) {
    		if ( zero || v == 1 ) return ;
    		zero = !( sum[0] /= v );
    	}
    	
    	inline UI query( const int l, const int r, const int ql, const int qr ) {
    	  	if ( zero ) return 0;
    		return assert( ql <= l && r <= qr ), sum.get();
    	}
    };
    
    SegmentTree<19> sgt;
    
    int main() {
    //	freopen( "machine.in", "r", stdin );
    //	freopen( "machine.out", "w", stdout );
    	
    	n = rdint(), q = rdint();
    	int R = 1 << 19;
    	sgt.build( 0, R - 1 );
    	
    	for ( int op, l, r; q--; ) {
    		op = rdint(), l = rdint() - 1, r = rdint() - 1;
    		if ( op == 1 ) sgt.secDiv( 0, R - 1, l, r, rxint() );
    		else if ( op == 2 ) sgt.secAnd( 0, R - 1, l, r, rxint() );
    		else wxint( sgt.query( 0, R - 1, l, r ) ), putchar( '
    ' );
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    E. Construct the Binary Tree
    Information Disturbing (树型DP + 二分)
    The Ghost Blows Light
    GeoDefense
    Apple Tree (可以重复走)
    Find Metal Mineral
    Rebuilding Roads
    CSS选择器
    CSS清除浮动的几种有效方法
    电话号码分身(小米2017秋招真题)
  • 原文地址:https://www.cnblogs.com/rainybunny/p/15036909.html
Copyright © 2011-2022 走看看