zoukankan      html  css  js  c++  java
  • Solution 「多校联训」排水系统

    \(\mathcal{Description}\)

      Link.

      在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a_i\)。求每个汇集口收集到污水的期望吨数。答案模 \(998244353\)(我谢谢出题人。

    \(\mathcal{Solution}\)

      方法一 这个题麻烦的地方在于 DAG 上断边,很难将每条断边的贡献一起计算(注意不是“叠加”,仅仅是一下子算出分别断开多条边的贡献之和)。我们得想个办法保持 DAG 的静态结构不变

      考虑若 \(\lang u,v\rang\) 断开,那么到达 \(u\) 的污水量期望 \(x\) 是已知的,且对于除了 \(v\) 之外 \(u\) 的所有后继 \(w\),流入量都会增加 \(\Delta_1=\frac{x}{d_u(d_u-1)}\)\(v\) 的流入量会减少 \(\Delta_2=\frac{x}{d_u}\)。当然“所有后继”所含要素过多,我们给它放到 \(u\) 身上,结合 \(\Delta_1,\Delta_2\),重新描述一下断边的影响:

      断掉 \(\lang u,v\rang\)\(u\) 会获得一条私人流入管道,流入量 \(I_u=\frac{x}{d_u-1}\)\(v\) 会获得一条私人流出管道,流出量 \(O_v=\frac{x}{d_u(d_u+1)}+\frac{x}{d_u}\)。注意 \(\lang u,v\rang\) 仍然存在且具有正常运输功能。

      嗯,DAG 不动了,随便算叭。


      方法二\(\sf OneInDark\) 太厉害辣!

    \(f(i,...)\),表示拓扑序前 \(i\) 个构成的 DAG 中,……

      不要被该死的树 DP 限制了,不要一直去想构造子树结构。

      两个方法复杂度都是 \(\mathcal O(n+m)\)

    \(\mathcal{Code}\)

      方法一。

    /*+Rainybunny+*/
    
    #include <bits/stdc++.h>
    
    #define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
    #define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
    
    inline char fgc() {
        static char buf[1 << 17], *p = buf, *q = buf;
        return p == q && (q = buf + fread(p = buf, 1, 1 << 17, stdin), p == q)
          ? EOF : *p++;
    }
    
    inline int rint() {
        int x = 0, s = fgc();
        for (; s < '0' || '9' < s; s = fgc());
        for (; '0' <= s && s <= '9'; s = fgc()) x = x * 10 + (s ^ '0');
        return x;
    }
    
    inline void wint(const int x) {
        if (9 < x) wint(x / 10);
        putchar(x % 10 ^ '0');
    }
    
    const int MAXN = 2e5, MAXM = 5e5, MOD = 998244353;
    int n, A, B, m, sum, ecnt, head[MAXN + 5];
    int ideg[MAXN + 5], odeg[MAXN + 5], osum[MAXN + 5];
    int inv[MAXM + 5], que[MAXN + 5], hd, tl, f[MAXN + 5], g[MAXN + 5];
    struct Edge { int to, old, nxt; } graph[MAXM + 5];
    
    inline void link(const int s, const int t, const int o) {
        graph[++ecnt] = { t, o, head[s] }, head[s] = ecnt;
    }
    
    inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
    inline void subeq(int& u, const int v) { (u -= v) < 0 && (u += MOD); }
    inline void addeq(int& u, const int v) { (u += v) >= MOD && (u -= MOD); }
    inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
    inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
    inline int mpow(int u, int v) {
        int ret = 1;
        for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
        return ret;
    }
    
    int main() {
        freopen("water.in", "r", stdin);
        freopen("water.out", "w", stdout);
    
        n = rint(), A = rint(), B = rint(), m = rint();
        rep (i, 1, m) {
            int s = rint(), t = rint(), a = rint();
            link(s, t, a), ++ideg[t], ++odeg[s], addeq(osum[s], a), addeq(sum, a);
        }
        inv[1] = 1, sum = mpow(sum, MOD - 2);
        rep (i, 2, m) inv[i] = mul(MOD - MOD / i, inv[MOD % i]);
        
        hd = 1;
        rep (i, 1, A) que[++tl] = i, f[i] = g[i] = 1;
        while (hd <= tl) {
            int u = que[hd++], dlt = mul(f[u], mul(inv[odeg[u]],inv[odeg[u] - 1]));
            addeq(g[u], mul(mul(osum[u], sum), mul(dlt, odeg[u])));
              // extra input [cut(u,?)].
            for (int i = head[u], v; i; i = graph[i].nxt) {
                if (!--ideg[v = graph[i].to]) que[++tl] = v;
                addeq(f[v], mul(f[u], inv[odeg[u]])); // normally flow.
                addeq(g[v], mul(g[u], inv[odeg[u]])); // normally flow.
                subeq(g[v], mul(mul(graph[i].old, sum), // extra output [cut(u,v)].
                  add(dlt, mul(f[u], inv[odeg[u]]))));
            }
        }
        rep (i, n - B + 1, n) printf("%d%c", g[i], i < n ? ' ' : '\n');
        return 0;
    }
    
    
  • 相关阅读:
    编写C#程序的IDE
    MacBook Pro装Win7后喇叭没有声音
    MacBook Pro装Win7后喇叭没有声音
    MacBook Pro装Win7后喇叭没有声音
    MacBook Pro装Win7后喇叭没有声音
    Linux从入门到精通系列之NFS
    Linux从入门到精通系列之NFS
    Linux从入门到精通系列之NFS
    Docker之docker设置系统的环境变量
    mq put 消息到远程队列
  • 原文地址:https://www.cnblogs.com/rainybunny/p/15508573.html
Copyright © 2011-2022 走看看