网络流的最小割问题,看到分配成两部分的题,就要想到网络流最小割,割值是一部分指向另一部分的边的初始容量的总和,不加上另一部分指向本部分的边的容量。而对于最小割来说,最大流流量就是最小割的容量。而划分方法,就是将最大流后残余网络中s可以走到的点划为s集合,其余点划为t集合,注意,不是可以走到t的点,因为有可能有一条线上的多条边都流满的情况,这种情况下有些点就无法走到t,而且s也走不到它。
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> using namespace std; #define N 20005 #define M 500005 #define typec int const typec inf = 0x3f3f3f3f; struct edge { int x, y, nxt; typec c; } bf[M]; int ne, head[N], cur[N], ps[N], dep[N]; void addedge(int x, int y, typec c) { bf[ne].x = x; bf[ne].y = y; bf[ne].c = c; bf[ne].nxt = head[x]; head[x] = ne++; bf[ne].x = y; bf[ne].y = x; bf[ne].c = 0; bf[ne].nxt = head[y]; head[y] = ne++; } void addedge1(int x, int y, typec c) { bf[ne].x = x; bf[ne].y = y; bf[ne].c = c; bf[ne].nxt = head[x]; head[x] = ne++; bf[ne].x = y; bf[ne].y = x; bf[ne].c = c; bf[ne].nxt = head[y]; head[y] = ne++; } typec flow(int n, int s, int t) { typec tr, res = 0; int i, j, k, f, r, top; while (1) { memset(dep, -1, n * sizeof(int)); for (f = dep[ps[0] = s] = 0, r = 1; f != r;) { for (i = ps[f++], j = head[i]; j; j = bf[j].nxt) { if (bf[j].c && -1 == dep[k = bf[j].y]) { dep[k] = dep[i] + 1; ps[r++] = k; if (k == t) { f = r; break; } } } } if (-1 == dep[t]) break; memcpy(cur, head, n * sizeof(int)); for (i = s, top = 0;;) { if (i == t) { for (k = 0, tr = inf; k < top; ++k) if (bf[ps[k]].c < tr) tr = bf[ps[f = k]].c; for (k = 0; k < top; ++k) bf[ps[k]].c -= tr, bf[ps[k] ^ 1].c += tr; res += tr; i = bf[ps[top = f]].x; } for (j = cur[i]; cur[i]; j = cur[i] = bf[cur[i]].nxt) if (bf[j].c && dep[i] + 1 == dep[bf[j].y]) break; if (cur[i]) { ps[top++] = cur[i]; i = bf[cur[i]].y; } else { if (0 == top) break; dep[i] = -1; i = bf[ps[--top]].x; } } } return res; } int main() { //freopen("D:\\t.txt", "r", stdin); int n, m; scanf("%d%d", &n, &m); ne = 2; memset(head, 0, sizeof(head)); n += 2; int s = 0; int t = 1; for (int i = 2; i < n; i++) { int a, b; scanf("%d%d", &a, &b); addedge(s, i, a); addedge(i, t, b); } for (int i = 0; i < m; i++) { int x, y, c; scanf("%d%d%d", &x, &y, &c); addedge1(x + 1, y + 1, c); } printf("%d\n", flow(n, s, t)); return 0; }