题意:把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
分析:dp,我们认为每个盘子所放的苹果数组成的数列是降序的,讨论最后一个盘子放不放苹果,若放则前面每个盘子都放,方法数相当于把每盘方一个之后剩下的m-n个苹果往n个盘子里放,若不放则相当于把m个苹果放入n-1个盘子。
View Code
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
usingnamespace std;
#define maxn 11
int f[maxn][maxn];
int main()
{
//freopen("t.txt", "r", stdin);
for (int i =0; i < maxn; i++)
f[i][0] =1;
for (int i =0; i < maxn; i++)
f[0][i] =0;
for (int i =1; i < maxn; i++)
for (int j =1; j < maxn; j++)
if (j >= i)
f[i][j] = f[i][j - i] + f[i -1][j];
else
f[i][j] = f[j][j];
int t;
int m, n;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &m, &n);
printf("%d\n", f[n][m]);
}
return0;
}
#include <cstdio>
#include <cstdlib>
#include <cstring>
usingnamespace std;
#define maxn 11
int f[maxn][maxn];
int main()
{
//freopen("t.txt", "r", stdin);
for (int i =0; i < maxn; i++)
f[i][0] =1;
for (int i =0; i < maxn; i++)
f[0][i] =0;
for (int i =1; i < maxn; i++)
for (int j =1; j < maxn; j++)
if (j >= i)
f[i][j] = f[i][j - i] + f[i -1][j];
else
f[i][j] = f[j][j];
int t;
int m, n;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &m, &n);
printf("%d\n", f[n][m]);
}
return0;
}