题意:给出一个正方形,每条边上有n个点,把这些点作为端点拉线组成的网格(整个正方形由一些四边行拼成),求最大格的面积。
分析:计算几何,求出所有线的交点,分别计算每个格的面积。
在求线段交点时可以用叉积面积的方式,求ac,bd交点:
void intersection(Point &a, Point &b, Point &c, Point &d, Point &ret)
{
double s1 = xmulti(a, c, b);
double s2 = xmulti(a, c, d);
ret.x = (s1 * d.x - s2 * b.x) / (s1 - s2);
ret.y = (s1 * d.y - s2 * b.y) / (s1 - s2);
}
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
usingnamespace std;
#define maxn 50
struct Point
{
double x, y;
} point[maxn][maxn];
double ans;
int n;
void input()
{
n++;
point[0][0].x =0;
point[0][0].y =0;
point[0][n].x =1;
point[0][n].y =0;
point[n][0].x =0;
point[n][0].y =1;
point[n][n].x =1;
point[n][n].y =1;
for (int i =1; i < n; i++)
{
scanf("%lf", &point[0][i].x);
point[0][i].y =0;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[n][i].x);
point[n][i].y =1;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[i][0].y);
point[i][0].x =0;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[i][n].y);
point[i][n].x =1;
}
}
double xmulti(Point &p0, Point &p1, Point &p2)
{
return ((p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y));
}
void intersection(Point &a, Point &b, Point &c, Point &d, Point &ret)
{
double s1 = xmulti(a, c, b);
double s2 = xmulti(a, c, d);
ret.x = (s1 * d.x - s2 * b.x) / (s1 - s2);
ret.y = (s1 * d.y - s2 * b.y) / (s1 - s2);
}
double area(Point &a, Point &b, Point &c, Point &d)
{
double s1 = xmulti(a, c, b);
double s2 = xmulti(a, c, d);
return (abs(s1) + abs(s2)) /2;
}
void work()
{
for (int i =1; i < n; i++)
for (int j =1; j < n; j++)
intersection(point[i][0], point[0][j], point[i][n], point[n][j], point[i][j]);
ans =-1;
for (int i =0; i < n; i++)
for (int j =0; j < n; j++)
{
double temp = area(point[i][j], point[i +1][j], point[i +1][j +1], point[i][j +1]);
ans = max(ans, temp);
}
}
int main()
{
//freopen("t.txt", "r", stdin);
while (scanf("%d", &n), n)
{
input();
work();
printf("%.6f\n", ans);
}
return0;
}
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
usingnamespace std;
#define maxn 50
struct Point
{
double x, y;
} point[maxn][maxn];
double ans;
int n;
void input()
{
n++;
point[0][0].x =0;
point[0][0].y =0;
point[0][n].x =1;
point[0][n].y =0;
point[n][0].x =0;
point[n][0].y =1;
point[n][n].x =1;
point[n][n].y =1;
for (int i =1; i < n; i++)
{
scanf("%lf", &point[0][i].x);
point[0][i].y =0;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[n][i].x);
point[n][i].y =1;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[i][0].y);
point[i][0].x =0;
}
for (int i =1; i < n; i++)
{
scanf("%lf", &point[i][n].y);
point[i][n].x =1;
}
}
double xmulti(Point &p0, Point &p1, Point &p2)
{
return ((p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y));
}
void intersection(Point &a, Point &b, Point &c, Point &d, Point &ret)
{
double s1 = xmulti(a, c, b);
double s2 = xmulti(a, c, d);
ret.x = (s1 * d.x - s2 * b.x) / (s1 - s2);
ret.y = (s1 * d.y - s2 * b.y) / (s1 - s2);
}
double area(Point &a, Point &b, Point &c, Point &d)
{
double s1 = xmulti(a, c, b);
double s2 = xmulti(a, c, d);
return (abs(s1) + abs(s2)) /2;
}
void work()
{
for (int i =1; i < n; i++)
for (int j =1; j < n; j++)
intersection(point[i][0], point[0][j], point[i][n], point[n][j], point[i][j]);
ans =-1;
for (int i =0; i < n; i++)
for (int j =0; j < n; j++)
{
double temp = area(point[i][j], point[i +1][j], point[i +1][j +1], point[i][j +1]);
ans = max(ans, temp);
}
}
int main()
{
//freopen("t.txt", "r", stdin);
while (scanf("%d", &n), n)
{
input();
work();
printf("%.6f\n", ans);
}
return0;
}