zoukankan      html  css  js  c++  java
  • poj1177

    题意:在平面直角坐标系内给出一些与坐标轴平行的矩形,将这些矩形覆盖的区域求并集,然后问这个区域的周长是多少。(边与边重合的地方不计入周长)

    分析:线段树。曾经做过类似的求矩形覆盖的总面积的题。这道题同样要使用扫描线算法。属于线保留型线段树。

    我们先领扫描线与y轴平行。

    线段树内每个节点除了要记录该区间被覆盖了几层之外,还要记录当前状态下扫描线在该区间(开区间)内与多少条与x轴平行的边相交。

    节点上还有两个bool型变量,记录该区间内(包括子树)线段覆盖是否接触到该区间的起始和结束点。

    在父节点如果没被整个覆盖,则需要从子区间的起始和结束点来更新父节点两端点的覆盖情况。

    更新过程在返回时,父节点的交点数量应等于两子节点交点数量的和,另外特判一下两子区间的公共点(父节点的中点),判断这里是不是覆盖与未覆盖的分界点,如果是则还需要在父节点上增加这个交点。

    这样就得知了每段与x轴平行的距离内有多少条线段需要计算,距离乘以数量即可。这样就计算出了所有与x轴平行的周长上的边的总长度。

    之后让扫描线与x轴平行即可计算出与y轴平行的所有周长上的边的总长度。

    #include <cstdio>
    #include <algorithm>
    using namespace std;
    //scanning from left to right
    //discretionize Ys
    #define MAX_REC_NUM 5005
    #define MAX_INTERVAL MAX_REC_NUM * 2
    
    struct Node
    {
        int    l, r;
        Node    *pleft, *pright;
        int    num;
        bool    to_left, to_right;    
        int    edge_num;
    };
    
    int    node_cnt;
    Node    tree[MAX_INTERVAL * 3];
    
    struct Interval
    {
        int start, end;
        int pos;
        int value;
        Interval()
        {}
        Interval(int start, int end, int pos, int value):start(start), end(end), pos(pos), value(value)
        {}
        bool operator < (const Interval &a)const
        {
            if (pos != a.pos)
                return pos < a.pos;
            return value > a.value;
        }
    }interval[MAX_REC_NUM * 2];
    
    struct Rectangle
    {
        int l, d, u, r;
    }rec[MAX_REC_NUM];
    
    int discrete[MAX_REC_NUM * 2];
    int discrete_num;
    int rec_num;
    int interval_num;
    
    int get_index(int a)
    {
        return lower_bound(discrete, discrete + discrete_num, a) - discrete;
    }
    
    void discretization(int discrete[], int &discrete_num)
    {
        sort(discrete, discrete + discrete_num);
        discrete_num = unique(discrete, discrete + discrete_num) - discrete;
    }
    
    void input()
    {
        scanf("%d", &rec_num);
        for (int i = 0; i < rec_num; i++)
        {
            int l, d, r, u;
            scanf("%d%d%d%d", &l, &d, &r, &u);
            rec[i].l = l;
            rec[i].r = r;
            rec[i].u = u;
            rec[i].d = d;
        }
    }
    
    void make_xscan()
    {
        discrete_num = 0;
        interval_num = 0;
        for (int i = 0; i < rec_num; i++)
        {
            int l, d, r, u;
            l = rec[i].l;
            r = rec[i].r;
            u = rec[i].u;
            d = rec[i].d;
            interval[interval_num++] = Interval(d, u, l, 1);
            interval[interval_num++] = Interval(d, u, r, -1);
            discrete[discrete_num++] = u;
            discrete[discrete_num++] = d;
        }
    }
    
    void make_yscan()
    {
        discrete_num = 0;
        interval_num = 0;
        for (int i = 0; i < rec_num; i++)
        {
            int l, d, r, u;
            l = rec[i].l;
            r = rec[i].r;
            u = rec[i].u;
            d = rec[i].d;
            interval[interval_num++] = Interval(l, r, d, 1);
            interval[interval_num++] = Interval(l, r, u, -1);
            discrete[discrete_num++] = l;
            discrete[discrete_num++] = r;
        }
    }
    
    void buildtree(Node *proot, int s, int e)
    {
        proot->l = s;
        proot->r = e;
        proot->to_left = false;
        proot->to_right = false;
        proot->num = 0;
        proot->edge_num = 0;
        if (s == e)
        {
            proot->pleft = proot->pright = NULL;
            return;
        }
        node_cnt++;
        proot->pleft = tree + node_cnt;
        node_cnt++;
        proot->pright = tree + node_cnt;
        buildtree(proot->pleft, s, (s + e) / 2);
        buildtree(proot->pright, (s + e) / 2 + 1, e);
    }
    
    void recount(Node *p)
    {
        if (p->num > 0)
        {
            p->edge_num = 0;
            p->to_right = p->to_left = true;
            return;
        }
        if (p->pleft == NULL || p->pright == NULL)
        {
            p->edge_num = 0;
            p->to_right = p->to_left = false;
            return;
        }
        p->to_left = p->pleft->to_left;
        p->to_right = p->pright->to_right;
        p->edge_num = p->pleft->edge_num + p->pright->edge_num;
        if (p->pleft->to_right != p->pright->to_left)
            p->edge_num++;
    }
    
    void insert(Node *proot, int s, int e, int value)
    {
        if (s > proot->r || e < proot->l)
            return;
        s = max(s, proot->l);
        e = min(e, proot->r);
        if (s == proot->l && e == proot->r)
        {
            proot->num += value;
            recount(proot);
            return;
        }
        insert(proot->pleft, s, e, value);
        insert(proot->pright, s, e, value);
        recount(proot);
    }
    
    long long work()
    {
        long long ans = 0;
        for (int i = 0; i < interval_num; i++)
        {
            int s = get_index(interval[i].start);
            int e = get_index(interval[i].end) - 1;
            insert(tree, s, e, interval[i].value);
            long long line_num = tree->edge_num;
            if (tree->to_left)
                line_num++;
            if (tree->to_right)
                line_num++;
            if (i != interval_num - 1)
                ans += (interval[i + 1].pos - interval[i].pos) * line_num;
        }
        return ans;
    }
    
    int main()
    {
        input();
        long long ans = 0;
        make_xscan();
        sort(interval, interval + interval_num);
        discretization(discrete, discrete_num);
        buildtree(tree, 0, discrete_num);
        ans += work();
    
        make_yscan();
        sort(interval, interval + interval_num);
        discretization(discrete, discrete_num);
        buildtree(tree, 0, discrete_num);
        ans += work();
    
        printf("%lld
    ", ans);
        return 0;
    }
    View Code
  • 相关阅读:
    Python 去掉文本中空行
    Pandas常用操作方法
    Numpy常用操作方法
    Python获取指定路径下所有文件的绝对路径
    Python获取指定目录下所有子目录、所有文件名
    Pycharm选中代码无法Backspace直接删除
    Redis常用命令(一)
    在eclipse程序中设置的断点上有一个斜杠,正常启动debug不能够跳转到debug页面,怎么解决
    常见的几种网络广告模式
    struts2中拦截器与过滤器的区别
  • 原文地址:https://www.cnblogs.com/rainydays/p/3495562.html
Copyright © 2011-2022 走看看