zoukankan      html  css  js  c++  java
  • 数据结构-1.3案例应用

    1.分而治之发没有看明白

    2.第四个算法真的太巧妙了

    3.在线处理算法:每得到一个数,终止输入的化都能得到当前状态下的结果

    分而治之法C代码

    int DivideAndConquer( int List[], int left, int right )
    { /* 分治法求List[left]到List[right]的最大子列和 */
        int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
        int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
     
        int LeftBorderSum, RightBorderSum;
        int center, i;
     
        if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
            if( List[left] > 0 )  return List[left];
            else return 0;
        }
     
        /* 下面是"分"的过程 */
        center = ( left + right ) / 2; /* 找到中分点 */
        /* 递归求得两边子列的最大和 */
        MaxLeftSum = DivideAndConquer( List, left, center );
        MaxRightSum = DivideAndConquer( List, center+1, right );
     
        /* 下面求跨分界线的最大子列和 */
        MaxLeftBorderSum = 0; LeftBorderSum = 0;
        for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
            LeftBorderSum += List[i];
            if( LeftBorderSum > MaxLeftBorderSum )
                MaxLeftBorderSum = LeftBorderSum;
        } /* 左边扫描结束 */
     
        MaxRightBorderSum = 0; RightBorderSum = 0;
        for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
            RightBorderSum += List[i];
            if( RightBorderSum > MaxRightBorderSum )
                MaxRightBorderSum = RightBorderSum;
        } /* 右边扫描结束 */
     
        /* 下面返回"治"的结果 */
        return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
    }
     
    int MaxSubseqSum3( int List[], int N )
    { /* 保持与前2种算法相同的函数接口 */
        return DivideAndConquer( List, 0, N-1 );
    }

  • 相关阅读:
    缓存Cache
    RDD的行动操作
    redis数据库的配置
    requests的封装(user-agent,proxies)
    phantjs
    python多线程
    etree-xpath
    Flask
    Flask
    Flask
  • 原文地址:https://www.cnblogs.com/raising/p/12856625.html
Copyright © 2011-2022 走看看