zoukankan      html  css  js  c++  java
  • 画相关性热图

    • 数据格式如下
    Sample CM11 CM12 CM13 CM21 CM22 CM23 CM31 CM32 CM33
    CM11 1 0.9627369 0.9884578 0.9841946 0.9762492 0.983613 0.9575127 0.743262 0.6178
    CM12 0.9627369 1 0.9616447 0.9405868 0.9354329 0.9442101 0.9816946 0.8740325 0.7634
    CM13 0.9884578 0.9616447 1 0.9827691 0.9754358 0.9845702 0.9736013 0.7541648 0.6165
    CM21 0.9841946 0.9405868 0.9827691 1 0.9949495 0.9914846 0.9445855 0.7201134 0.6109
    CM22 0.9762492 0.9354329 0.9754358 0.9949495 1 0.9911021 0.936078 0.7206804 0.6109
    CM23 0.983613 0.9442101 0.9845702 0.9914846 0.9911021 1 0.9469456 0.7364044 0.6163
    CM31 0.9575127 0.9816946 0.9736013 0.9445855 0.936078 0.9469456 1 0.8512908 0.7314
    CM32 0.743262 0.8740325 0.7541648 0.7201134 0.7206804 0.7364044 0.8512908 1 0.9350
    CM33 0.6178754 0.76344 0.6165455 0.6109218 0.6109854 0.6163989 0.731487 0.935035 1

    作图代码如下:

    library(reshape2)
    library(ggplot2)
    library(RColorBrewer)
    x <- read.table("AllSamples.correlation.xls", sep = "	", head = T)
    xx = as.matrix(x[,-1])
    rownames(xx) = names(x)[-1]
    xx = melt(xx)
    names(xx)=c("Var1","Var2","pearson_value");
    pdf("AllSamples.CorrelationHeatmap.pdf",width=9,height=9)
    ggplot(xx, aes(Var1, Var2, fill=pearson_value))+
     #geom_tile(width=0.8, height=0.8)+
      geom_tile(color='black')+
      geom_text(label=round(xx$pearson_value, 3))+
      scale_fill_gradient(low='#DEEBF7',high='#08519C')+
      theme(axis.text = element_text(angle=30, hjust=1,size=11,vjust=0,color='black'),
      panel.background = element_rect(fill='transparent'),
      panel.grid=element_line(color='grey'),legend.title = element_text(size = 13))+
      labs(x="",y="")
    dev.off()
    • 图片效果如下
  • 相关阅读:
    Linux下安装maven
    非连续性及反脆弱
    高手是怎么练成的
    思维型大脑
    编写文档五轮模式
    Nginx初识
    ida快捷键
    ida+gdb调试任意平台
    gcc常用命令使用
    ida调试ios应用
  • 原文地址:https://www.cnblogs.com/raisok/p/11010421.html
Copyright © 2011-2022 走看看